Math 1 Lecture 17

Dartmouth College

Wednesday 10-19-16

Contents

Reminders/Announcements

Last time

The derivative as a function

Exam Review

Reminders/Announcements

- Exam\#2 is Thursday 10/20/16 and will cover material from Trigonometry up to and NOT including derivatives
- Exam review during x-hour 10/20/16
- Exam Review Slides: https://math.dartmouth.edu/~m1f16/MATH1Docs/ Musty-x-hour-Slides-10-13-Thur.pdf
- Because of the exam there will be no WebWork due Friday 10/21/16

Last time

- The derivative at a point
- The derivative as an instantaneous rate of change
- The derivative as the slope of a tangent line

Suppose the function $f(x)$ has a tangent line at the point $(4,3)$ (i.e. $f(4)=3$) passes through the point $(0,2)$. Find $f^{\prime}(4)$.

Suppose the function $f(x)$ has a tangent line at the point $(4,3)$ (i.e. $f(4)=3$) passes through the point $(0,2)$. Find $f^{\prime}(4)$. Solution: $f^{\prime}(4)=1 / 4$.

Write the following limit as $f^{\prime}(a)$ for some f and some a.

Write the following limit as $f^{\prime}(a)$ for some f and some a.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

Write the following limit as $f^{\prime}(a)$ for some f and some a.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

Solution:

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}=f^{\prime}(a)
$$

for $f(x)=\sqrt{x}$ and $a=9$.

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined.

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined. The number $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$.

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined. The number $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$. It is also the instantaneous rate of change of the function at a.

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined. The number $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$. It is also the instantaneous rate of change of the function at a. Using these values $f^{\prime}(a)$ we can define a function which we call the derivative of f as follows:

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined. The number $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$. It is also the instantaneous rate of change of the function at a. Using these values $f^{\prime}(a)$ we can define a function which we call the derivative of f as follows:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The derivative as a function

Previously we defined numbers $f^{\prime}(a)$ by a limit whenever that limit is defined. The number $f^{\prime}(a)$ is the slope of the tangent line to the graph of f at the point $(a, f(a))$. It is also the instantaneous rate of change of the function at a. Using these values $f^{\prime}(a)$ we can define a function which we call the derivative of f as follows:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The domain of this new function $f^{\prime}(x)$ is precisely the numbers a in the domain of f where the number $f^{\prime}(a)$ is defined. Other notations for $f^{\prime}(x)$ include

$$
\frac{d y}{d x}, \frac{d}{d x}(f(x)), D_{x}(f), \ldots
$$

Examples

- Let $f(x)=\sqrt{x}$. Show that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ using the definition.
- Let $f(x)=x^{2}$. Show that $f^{\prime}(x)=2 x$ using the definition.
- Let $f(x)=x^{3}-x$. Show that $f^{\prime}(x)=3 x^{2}-1$ using the definition.

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which?

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which? $f(x)=x^{2}, f^{\prime}(x)=2 x$.

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which?

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which? $f(x)=x^{3}-x, f^{\prime}(x)=3 x^{2}-1$.

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which? $f(x)=x^{3}-x, f^{\prime}(x)=3 x^{2}-1$. What is the slope of the line tangent to the graph of f when $x=1$?

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which? $f(x)=x^{3}-x, f^{\prime}(x)=3 x^{2}-1$. What is the slope of the line tangent to the graph of f when $x=1$? What about when $x=-1$?

Here are the graphs $f(x)$ and $f^{\prime}(x)$ for some function $f \ldots$

Which one is which? $f(x)=x^{3}-x, f^{\prime}(x)=3 x^{2}-1$. What is the slope of the line tangent to the graph of f when $x=1$? What about when $x=-1$? They both 2 .

Consider the graphs from the previous slide.

Consider the graphs from the previous slide.

What does f^{\prime} tell us about how f is increasing or decreasing (from left to right)? Where is f^{\prime} equal to zero? Can we find the precise intervals where f is increasing?

Consider the graphs from the previous slide.

What does f^{\prime} tell us about how f is increasing or decreasing (from left to right)? Where is f^{\prime} equal to zero? Can we find the precise intervals where f is increasing? Let's find out!

Let $f(x)=|x|$.

Let $f(x)=|x|$. What is $f^{\prime}(0)$? Well...

Let $f(x)=|x|$. What is $f^{\prime}(0)$? Well...

Let $f(x)=|x|$. What is $f^{\prime}(0)$? Well...

$$
-1=\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} \neq \lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=1
$$

Let $f(x)=|x|$. What is $f^{\prime}(0)$? Well...

$$
-1=\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} \neq \lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}=1
$$

What does the graph of the derivative look like?

The derivative of $f(x)=|x|$ is not continuous at 0 !

The derivative of $f(x)=|x|$ is not continuous at 0 ! 大因

As we saw in the previous example, one way the derivative can fail to be defined is if the function isn't "smooth enough" at a given point...

As we saw in the previous example, one way the derivative can fail to be defined is if the function isn't "smooth enough" at a given point... The precise definition is given by the limit, but one other way this can happen is if the function has a discontinuity.

As we saw in the previous example, one way the derivative can fail to be defined is if the function isn't "smooth enough" at a given point... The precise definition is given by the limit, but one other way this can happen is if the function has a discontinuity. As an example, let's consider $f(x)=\lfloor x\rfloor$.

As we saw in the previous example, one way the derivative can fail to be defined is if the function isn't "smooth enough" at a given point... The precise definition is given by the limit, but one other way this can happen is if the function has a discontinuity. As an example, let's consider $f(x)=\lfloor x\rfloor$. What does the graph of f^{\prime} look like?

If there's any time left. . . let's talk about the exam. . .

If there's any time left. . . let's talk about the exam. . .
What do we need to know for the exam?
Do we need to know things?

If there's any time left. . . let's talk about the exam. . .
What do we need to know for the exam?
Do we need to know things? Let's find out!

If there's any time left. . . let's talk about the exam. . . What do we need to know for the exam?
Do we need to know things? Let's find out!

https://math.dartmouth.edu/~m1f16/MATH1Docs/ Musty-x-hour-Slides-10-13-Thur.pdf

