Math 1 Lecture 16

Dartmouth College

Monday 10-17-16

Contents

Reminders/Announcements

The Derivative of f at a

Reminders/Announcements

- WebWork due Wednesday
- Written Homework due Wednesday
- Exam\#2 is Thursday 10/20/16 and will cover material from Trigonometry up to and NOT including derivatives
- Exam review during x-hour 10/20/16
- Exam Review Slides:
https://math.dartmouth.edu/~m1f16/MATH1Docs/ Musty-x-hour-Slides-10-13-Thur.pdf
- Because of the exam there will be no WebWork due Friday 10/21/16

The Derivative of f at a

Let a be in the domain of f. We define the derivative of f at a by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

whenever this limit is defined.

The Derivative of f at a

Let a be in the domain of f. We define the derivative of f at a by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

whenever this limit is defined. Why would we do such a thing?

The Derivative of f at a

Let a be in the domain of f. We define the derivative of f at a by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

whenever this limit is defined. Why would we do such a thing? Well, recall what we know about rates of change...

What happens to $\frac{f(a+h)-f(a)}{h}$ as $h \rightarrow 0$?

Let $f(x)=x^{2}$. Please find $f^{\prime}(3)$.

Let $f(x)=x^{2}$. Please find $f^{\prime}(3)$.
Solution:
$f^{\prime}(3)=6$.

Let $f(x)=\sqrt{x}$. Please find $f^{\prime}(5)$.

Let $f(x)=\sqrt{x}$. Please find $f^{\prime}(5)$.
Solution:

$$
f^{\prime}(5)=\sqrt{5} / 10
$$

Let $f(x)=1 / x$. Please find $f^{\prime}(-2)$.

Let $f(x)=1 / x$. Please find $f^{\prime}(-2)$. Solution:

$$
f^{\prime}(-2)=-1 / 4
$$

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2} . s$ for height. . .

Find the velocity of the rock after one second.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2} . s$ for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2} . s$ for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.
Solution: $s^{\prime}(a)=10-3.72 \cdot a$.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.
Solution: $s^{\prime}(a)=10-3.72 \cdot a$.

When will the rock hit the surface?

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.
Solution: $s^{\prime}(a)=10-3.72 \cdot a$.
When will the rock hit the surface?
Solution: When $t=500 / 93=5.37634408602151$ seconds.

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.
Solution: $s^{\prime}(a)=10-3.72 \cdot a$.
When will the rock hit the surface?
Solution: When $t=500 / 93=5.37634408602151$ seconds.

With what velocity will the rock hit the surface?

If a rock is thrown upward on the planet Mars with a velocity of 10 m / s, its height in meters after t seconds is given by $s(t)=10 t-1.86 t^{2}$. s for height. . .

Find the velocity of the rock after one second.

Solution:

$s^{\prime}(1)=6.28$.
Find the velocity of the rock when $t=a$.
Solution: $s^{\prime}(a)=10-3.72 \cdot a$.

When will the rock hit the surface?
Solution: When $t=500 / 93=5.37634408602151$ seconds.

With what velocity will the rock hit the surface?
Solution:
$s^{\prime}(500 / 93)=-10$.

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$.

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$. s for position...

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$. s for position...

Find the instantaneous velocity of the particle when $t=8$.

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$. s for position...

Find the instantaneous velocity of the particle when $t=8$. Solution:
$v(8)=s^{\prime}(8)=2$.

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$. s for position...

Find the instantaneous velocity of the particle when $t=8$.
Solution:
$v(8)=s^{\prime}(8)=2$.
What is the equation of the line tangent to the graph of s at the point $(8, s(8))$?

The position in feet of a particle moving in a straight line for t seconds is given by $s(t)=\frac{1}{2} t^{2}-6 t+23$. s for position...

Find the instantaneous velocity of the particle when $t=8$.
Solution:
$v(8)=s^{\prime}(8)=2$.
What is the equation of the line tangent to the graph of s at the point ($8, s(8)$)?
Solution:
$y-7=2(x-8) \Longrightarrow y=2 x-9$.

Suppose the function $f(x)$ has a tangent line at the point $(4,3)$ (i.e. $f(4)=3$) passes through the point $(0,2)$. Find $f^{\prime}(4)$.

Suppose the function $f(x)$ has a tangent line at the point $(4,3)$ (i.e. $f(4)=3$) passes through the point $(0,2)$. Find $f^{\prime}(4)$. Solution: $f^{\prime}(4)=1 / 4$.

Write the following limit as $f^{\prime}(a)$ for some f and some a.

Write the following limit as $f^{\prime}(a)$ for some f and some a.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

Write the following limit as $f^{\prime}(a)$ for some f and some a.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}
$$

Solution:

$$
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h}=f^{\prime}(a)
$$

for $f(x)=\sqrt{x}$ and $a=9$.

