Math 1 Lecture 14

Dartmouth College

Wednesday 10-12-16

Contents

Reminders/Announcements

Examples of Limits

Continuity

Exercises as time permits

Reminders/Announcements

- WebWork due Friday
- x-hour tomorrow
- Exam\#2 is next Thursday 10/20/16 and will cover material from Trigonometry up to and NOT including derivatives

More Examples

$\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}=$

More Examples

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}=\frac{1}{2}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23}
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23} \\
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23} \\
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =6
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23} \\
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =6 \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & =
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23} \\
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =6 \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & =1 / 6
\end{aligned}
$$

More Examples

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x} & =\frac{1}{2} \\
\lim _{x \rightarrow 4} \frac{x^{2}-16}{5 x^{2}-17 x-12} & =\frac{8}{23} \\
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =6 \\
\lim _{h \rightarrow 0} \frac{\sqrt{9+h}-3}{h} & =1 / 6
\end{aligned}
$$

We can manipulate the functions in an algebraic way to make limit computations more apparent.

Continuity at a point

A function $f(x)$ is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Continuity at a point

A function $f(x)$ is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Similarly, a function $f(x)$ is left continuous at a number a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

and is right continuous at a number a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Consider the floor function $f(x)=\lfloor x\rfloor$.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x)$?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x)$?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1)$?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.
Is f left continuous at -1 ?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x)$? -1 .
What is $f(-1) ?-1$.
Is f left continuous at -1 ? Nope.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.
Is f left continuous at -1 ? Nope. Right continuous at -1 ?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.
Is f left continuous at -1 ? Nope. Right continuous at -1 ? Yes.

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.
Is f left continuous at -1 ? Nope. Right continuous at -1 ? Yes. Is f continuous at -1 ?

Consider the floor function $f(x)=\lfloor x\rfloor$.

What is $\lim _{x \rightarrow-1^{-}} f(x) ?-2$.
What is $\lim _{x \rightarrow-1^{+}} f(x) ?-1$.
What is $f(-1) ?-1$.
Is f left continuous at -1 ? Nope. Right continuous at -1 ? Yes. Is f continuous at -1 ? Nope.

Types of "discontinuities"

We now organize the ways in which a function can fail to be continuous.

Types of "discontinuities"

We now organize the ways in which a function can fail to be continuous. There are three types of discontinuities:

Types of "discontinuities"

We now organize the ways in which a function can fail to be continuous. There are three types of discontinuities:

- Removable discontinuity
- Jump discontinuity
- Infinite discontinuity

Types of "discontinuities"

We now organize the ways in which a function can fail to be continuous. There are three types of discontinuities:

- Removable discontinuity
- Jump discontinuity
- Infinite discontinuity

The precise definition is that f is discontinuous at a if BOTH the following hold:

- f is defined in an open interval contiaining a except possibly at a.
- f is not continuous at a.

Types of "discontinuities"

We now organize the ways in which a function can fail to be continuous. There are three types of discontinuities:

- Removable discontinuity
- Jump discontinuity
- Infinite discontinuity

The precise definition is that f is discontinuous at a if BOTH the following hold:

- f is defined in an open interval contiaining a except possibly at a.
- f is not continuous at a.

Since this is a bit technical, we now give some examples.

Removable discontinuity

Where does g have a removable discontinuity?

Removable discontinuity

Where does g have a removable discontinuity? g has a removable discontinuity at -1 .

Removable discontinuity

Where does g have a removable discontinuity? g has a removable discontinuity at -1 . We call this type of discontinuity removable since it could be made continuous by "adding a single point".

Infinite discontinuity

Where does g have an infinite discontinuity?

Infinite discontinuity

Where does g have an infinite discontinuity? g has an infinite discontinuity at 1 .

Jump discontinuity

Jump discontinuity

Where is f discontinuous?

Jump discontinuity

Where is f discontinuous? $\ldots,-3,-2,-1,0,1,2,3, \ldots$

Jump discontinuity

Where is f discontinuous? $\ldots,-3,-2,-1,0,1,2,3, \ldots$ These are examples of...

Jump discontinuity

Where is f discontinuous? ..., $-3,-2,-1,0,1,2,3, \ldots$ These are examples of. . . jump discontinuities!

Jump discontinuity

Where is f discontinuous? ..., $-3,-2,-1,0,1,2,3, \ldots$ These are examples of. . .jump discontinuities! huh?

Jump discontinuity

Where is f discontinuous? ..., $-3,-2,-1,0,1,2,3, \ldots$ These are examples of. . . jump discontinuities! huh? The graph jumps!

Jump discontinuity

Where is f discontinuous? ..., $-3,-2,-1,0,1,2,3, \ldots$ These are examples of. . . jump discontinuities! huh? The graph jumps! oh因

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ?

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ? Well, certainly the definition of continuity is not satisfied at -1 , so the function is definitely not continuous at -1 .

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ? Well, certainly the definition of continuity is not satisfied at -1 , so the function is definitely not continuous at -1 . However, the reason it's not continuous is a silly one. The function isn't even defined around -1 , so from the perspective of continuity we really don't care what happens at -1 .

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ? Well, certainly the definition of continuity is not satisfied at -1 , so the function is definitely not continuous at -1 . However, the reason it's not continuous is a silly one. The function isn't even defined around -1 , so from the perspective of continuity we really don't care what happens at -1 . For this reason we adopt the convention that in this case the function does not have any discontinuities...

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ? Well, certainly the definition of continuity is not satisfied at -1 , so the function is definitely not continuous at -1 . However, the reason it's not continuous is a silly one. The function isn't even defined around -1 , so from the perspective of continuity we really don't care what happens at -1 . For this reason we adopt the convention that in this case the function does not have any discontinuities... Although it may have lots of places where it is not continuous!

What about $f(x)=\log (x)$?

Is $\log (x)$ discontinuous at -1 ? Well, certainly the definition of continuity is not satisfied at -1 , so the function is definitely not continuous at -1 . However, the reason it's not continuous is a silly one. The function isn't even defined around -1 , so from the perspective of continuity we really don't care what happens at -1 . For this reason we adopt the convention that in this case the function does not have any discontinuities... Although it may have lots of places where it is not continuous! UGH! We have to be careful :

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval.

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval. What about at endpoints of the intervals in consideration?

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval. What about at endpoints of the intervals in consideration? If the function is defined there, then we only require that the function be left or right continuous.

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval. What about at endpoints of the intervals in consideration? If the function is defined there, then we only require that the function be left or right continuous.

For example, consider the functions $f(x)=\sqrt{x}$ and $g(x)=\log (x)$.

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval. What about at endpoints of the intervals in consideration? If the function is defined there, then we only require that the function be left or right continuous.

For example, consider the functions $f(x)=\sqrt{x}$ and $g(x)=\log (x)$. We say f is continuous on the interval $[0, \infty)$ even though at 0 the function is only right continuous.

Continuity on an interval

We say a function f is continuous on an interval if it is continuous at every number in the interval. What about at endpoints of the intervals in consideration? If the function is defined there, then we only require that the function be left or right continuous.

For example, consider the functions $f(x)=\sqrt{x}$ and $g(x)=\log (x)$. We say f is continuous on the interval $[0, \infty)$ even though at 0 the function is only right continuous. What is the largest interval that g is continuous on?

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant.

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a.

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then...

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. . f / g is also continuous at a.

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. . f / g is also continuous at a.

Now suppose g is continuous at a and f is continuous at $g(a)$. Then what can we conclude about $f \circ g$?

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. . f / g is also continuous at a.

Now suppose g is continuous at a and f is continuous at $g(a)$. Then what can we conclude about $f \circ g$? Exactly... it's continuous at a !

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. . f / g is also continuous at a.

Now suppose g is continuous at a and f is continuous at $g(a)$. Then what can we conclude about $f \circ g$? Exactly...it's continuous at a !

Lastly, we can restate the limit theorem we alluded to in the previous class.

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. $. f / g$ is also continuous at a.

Now suppose g is continuous at a and f is continuous at $g(a)$. Then what can we conclude about $f \circ g$? Exactly... it's continuous at a !

Lastly, we can restate the limit theorem we alluded to in the previous class. If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then...

Continuity Theorems

Let f and g be continuous at a and $c \in \mathbb{R}$ a constant. Then $f \pm g$, $c f, f g$ (multiplication) are also continuous at a. If, in addition $g(a) \neq 0$, then. $. f / g$ is also continuous at a.

Now suppose g is continuous at a and f is continuous at $g(a)$. Then what can we conclude about $f \circ g$? Exactly... it's continuous at a !

Lastly, we can restate the limit theorem we alluded to in the previous class. If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then...

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Compute $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}$.

Compute $\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}}$.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \sqrt{\frac{2 x^{2}+1}{3 x-2}} & =\sqrt{\lim _{x \rightarrow 2} \frac{2 x^{2}+1}{3 x-2}} \\
& =\sqrt{\frac{2 \cdot 2^{2}+1}{3 \cdot 2-2}} \\
& =\sqrt{\frac{9}{4}} \\
& =3 / 2 .
\end{aligned}
$$

What are some continuous functions?

Any ideas?

What are some continuous functions?

Any ideas?
Polynomials are continuous on $(-\infty, \infty)$.

What are some continuous functions?

Any ideas?
Polynomials are continuous on $(-\infty, \infty)$.
Rational functions are continuous on their domains.

What are some continuous functions?

Any ideas?

Polynomials are continuous on $(-\infty, \infty)$.
Rational functions are continuous on their domains.
The functions $\sqrt[n]{ }$ are continuous on their domains.

What are some continuous functions?

Any ideas?

Polynomials are continuous on $(-\infty, \infty)$.
Rational functions are continuous on their domains.
The functions $\sqrt[n]{ }$ are continuous on their domains.
Trigonometric functions are continuous on their domains.

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain.

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ?

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ? Well, the domain of g includes all real numbers except ± 3. Thus g is continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$.

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ? Well, the domain of g includes all real numbers except ± 3. Thus g is continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$. Where is f discontinuous?

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ? Well, the domain of g includes all real numbers except ± 3. Thus g is continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$. Where is f discontinuous? Well, the only possibilities are ± 3 (g is continuous everywhere else!) and indeed g is discontinuous at 3 and -3 .

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ? Well, the domain of g includes all real numbers except ± 3. Thus g is continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$. Where is f discontinuous? Well, the only possibilities are ± 3 (g is continuous everywhere else!) and indeed g is discontinuous at 3 and -3 . Why?

Let $f(x)=\cos (\sin (x))$. Where is f continuous?

Solution:

f is the composition of 2 functions continuous on \mathbb{R}. Therefore f is also continuous on \mathbb{R}.

Let $g(x)=1 /\left(\sqrt{x^{2}+7}-4\right)$. Where is f continuous?

Solution:

g is a composition of functions that are all continuous on their domains. Thus g is also continuous on its domain. What is the domain of g ? Well, the domain of g includes all real numbers except ± 3. Thus g is continuous on $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$. Where is f discontinuous? Well, the only possibilities are ± 3 (g is continuous everywhere else!) and indeed g is discontinuous at 3 and -3 . Why? The definition has 2 conditions. . . and they are both satisfied.

Intermediate Value Theorem

Suppose f is continuous on the interval $[a, b]$ and $f(a) \neq f(b)$. Let $N \in[f(a), f(b)]$. Then there exists $c \in(a, b)$ such that $f(c)=N$.

Intermediate Value Theorem

Suppose f is continuous on the interval $[a, b]$ and $f(a) \neq f(b)$. Let $N \in[f(a), f(b)]$. Then there exists $c \in(a, b)$ such that $f(c)=N$. Proof.

Draw a picture!

Use the intermediate value theorem to show that there is a root of the equation

$$
4 x^{3}-6 x^{2}+3 x-2=0
$$

between 1 and 2 .

Use the intermediate value theorem to show that there is a root of the equation

$$
4 x^{3}-6 x^{2}+3 x-2=0
$$

between 1 and 2 .

Solution:

Let $f(x)=4 x^{3}-6 x^{2}+3 x-2$ and apply IVT with $[a, b]=[1,2]$ and $N=0$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

Solution:

f has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

Solution:

f has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

What about for $f^{-1}(x)=\arctan (x)$.

Find all horizontal and vertical asymptotes of $f(x)=\tan x$.

Solution:

f has no horizontal asymptotes. The vertical asymptotes are $x= \pm \pi / 2, x= \pm 3 \pi / 2, x= \pm 5 \pi / 2, \ldots$.

What about for $f^{-1}(x)=\arctan (x)$.

Solution:

f^{-1} has no vertical asymptotes. It has 2 horizontal asymptotes
$y= \pm \pi / 2$.

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:
f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ?

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$.

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:
f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is f continuous?

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is f continuous? It's continuous on its domain.

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is f continuous? It's continuous on its domain. Does f have any discontinuities?

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is f continuous? It's continuous on its domain. Does f have any discontinuities? Yes. Now that f is defined near zero, f has an infinite discontinuity at zero.

Let $f(x)=\log (x)$. Where is f continuous? Is f discontinuous anywhere?

Solution:

f is continuous on $(0, \infty) . f$ does not have any discontinuities.
What if instead we consider $f(x)=\log |x|$?
Solution: Well, what is the domain of f ? Yep, $(-\infty, 0) \cup(0, \infty)$. Where is f continuous? It's continuous on its domain. Does f have any discontinuities? Yes. Now that f is defined near zero, f has an infinite discontinuity at zero. Should we graph f ?

Let

$$
f(x)=\left\{\begin{array}{ll}
\sin x & \text { if } x<\pi / 4 \\
\cos x & \text { if } x \geq \pi / 4
\end{array} .\right.
$$

Where is f continuous? Is f discontinuous anywhere?

Let

$$
f(x)=\left\{\begin{array}{ll}
\sin x & \text { if } x<\pi / 4 \\
\cos x & \text { if } x \geq \pi / 4
\end{array} .\right.
$$

Where is f continuous? Is f discontinuous anywhere?

Solution: f is continuous everywhere.

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x) ?$

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$? Well, that has the correct vertical asymptotes but what about the horizontal one?

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$? Well, that has the correct vertical asymptotes but what about the horizontal one? To yield the correct horizontal asymptote we define

$$
f(x)=\frac{5(x-5)^{3}}{(x+3)(x-2) x}
$$

Why $x-5$? Well, it doesn't really matter except that we don't want the numerator to be zero when the denominator is. So 5 could have been anything except $-3,0,2$.

Find a function with horizontal asymptote $y=5$ and vertical asymptotes $x=-3, x=2, x=0$.

Solution:

Well, consider a rational function. We know we want the denominator to be zero at $x=-3,0,2$. So how about $f_{1}(x)=1 /((x+3)(x-2) x)$? Well, that has the correct vertical asymptotes but what about the horizontal one? To yield the correct horizontal asymptote we define

$$
f(x)=\frac{5(x-5)^{3}}{(x+3)(x-2) x}
$$

Why $x-5$? Well, it doesn't really matter except that we don't want the numerator to be zero when the denominator is. So 5 could have been anything except $-3,0,2$. What would have happened in that case?

