Math 1 Lecture 13

Dartmouth College

Monday 10-10-16



Reminders/Announcements
The Definition of limy_,, f(x)
Properties of Limits

Examples of Limits



Reminders/Announcements

» WebWork due Wednesday
> Written Homework due Wednesday

» Quiz Today. .. like now



Mathematical definition of lim,_,, f(x)

Let f be defined on some interval containing the real number a
except possibly at a itself.
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Mathematical definition of lim,_,, f(x)

Let f be defined on some interval containing the real number a
except possibly at a itself.

Then we say “the limit of f(x) as x approaches a is L, and we
write limy_,, f(x) = L" if the following holds:

For every € > 0 there exists § > 0 such that
O0<|x—al<d = |f(x)—L|<e.

Show me a picture!



Definition. . . with a picture. . . fixed the typo!GH
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Note that a € R is constant.



Definition. . . with a picture. . . fixed the typo!GH

Note that a € R is constant. Given € > 0 we want ¢ so that

a—d<x<a+d = L—e<f(x)<L+e.



Prove that lim,_,;(x +2) =3



Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given.



Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given. Now we
observe that



Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given. Now we
observe that

f(x)—L|<e = 3—-e<x+2<3+4¢
= l-e<x<1l+e¢
= |x—1|<e.



Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given. Now we
observe that

f(x)—L|<e = 3—-e<x+2<3+4¢
= l-e<x<1l+e¢
= |x—1|<e.

So if we take § = ¢, then we get



Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given. Now we
observe that

f(x)—L|<e = 3—-e<x+2<3+4¢
= l-e<x<1l+e¢
= |x—1|<e.

So if we take § = ¢, then we get

x-1<éd = —0<x—-1<9
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= 3-0<x+2<3+4+9
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Prove that lim,_,;(x +2) =3

First note that a=1 and L = 3 and let € > 0 be given. Now we
observe that

f(x)—L<e = 3—e<x+2<3+¢
= l-e<x<1l+c¢
= |x—1|<e.

So if we take § = ¢, then we get

x -1 <d = —d<x—-1<96
= 1-0<x<1+4+9
= 3-0<x+2<3+4+90
= |x+2-3] <
——
f(x)
= |f(x)-L|<e.

Since such a § works for every positive ¢, this completes the proof.



One-sided Limits

In a similar way we rigorously define lim,_, ,+ 7(x).



One-sided Limits

In a similar way we rigorously define lim,_, ,+ f(x). We won't write
out the definitions here, but we should make sure we recall that

lim f(x) =L <= lim f(x) =L and lim f(x)=L.

X—a x—a— xX—a
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Using the definition one can prove the following properties.
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Properties of Limits

Using the definition one can prove the following properties.
Suppose ¢ € R and suppose the limits lim,_,, f(x) and
limyx_,2 g(x) exist and are finite. Then

> limy,c=c¢

> limyea(F(x) £ g(x)) = limyoa F(x) £ limyx—2 g(x)
> limy_a(c- f(x)) = ¢ limy_a f(x)

- o) -8(x)) = (i F(3) - (im0 5(x)
> lim,_, (%) = % if limy_,g(x)#0



Limits of Compositions
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lim f(g(x))="f (Iim g(x))

X—a X—a

but we need to make sure f is “continuous at limy_,, g(x)".



Limits of Compositions

What is limy_,, f(g(x))? Well,
lim £(g(x)) = f (lim g(x)) ...
but we need to make sure f is “continuous at limy_,, g(x)". We

will talk about continuity soon, but for now we will just explain the
intuition in the following examples.



Let f be defined by the red graph and g be defined by blue.

3 3




Using the functions on the previous slide (and the limit properties)
we can compute the following examples.
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x—3t



Using the functions on the previous slide (and the limit properties)
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Using the functions on the previous slide (and the limit properties)
we can compute the following examples.

lim (F()g() = (fim 700) - fim g()) =1-2=2
im (7(x) + 8(x)) =

x—0~



Using the functions on the previous slide (and the limit properties)
we can compute the following examples.

lim (F()g(x)) = ( jim f(x)> - ( jim g(x)> —1.0=02
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Using the functions on the previous slide (and the limit properties)
we can compute the following examples.

lim (F()g(x)) = ( jim f(x)> - ( jim g(x)> —1.0=02

x—3*t x—3t x—3*t

lim (f(x)+g(x))=3+0=3

x—0~

lim f(g(x)) =

x—0~



Using the functions on the previous slide (and the limit properties)
we can compute the following examples.

lim (F()g(x)) = ( jim f(x)> - ( jim g(x)> —1.0=02

x—3t x—3t x—3t
XI_i)n(;nf(f(x) +g(x))=3+0=3
tim Flg)) = £ im £(0) = £(0) =3



More Examples

. x24+10x+24
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More Examples

. 2
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limy__4 %43?24 = 2 corrected typo here GH



More Examples

. 2
limy__4 %43?24 = 2 corrected typo here GH

. . 1\
lim,_,q sin (;) =
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More Examples
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— x+4 Y
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More Examples

. 2
limy_,_gq XE10424 — 5 orrected typo here GBI
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More Examples

. 2
limy_,_gq XE10424 — 5 orrected typo here GBI
— x+4 Y

lim,_,q sin (%) = Does Not Exist
limx_0log x = Does Not Exist
lim,_o+ logx = —o0

lim sin(cosx) __
Xx==m/2 Tcosx



More Examples

. 2
limy_,_gq XE10424 — 5 orrected typo here GBI
— x+4 Y

lim,_,q sin (%) = Does Not Exist
limx_0log x = Does Not Exist
lim,_o+ logx = —o0

. sin(cosx) __
My —m/2 eosx = 1



More Examples



More Examples




More Examples

i X —2 _1
XT;'ZX2—2X_2
x2 - 16

lim —— — =0
b Bx? — 17x — 12



More Examples

lim x=2 —l
x—2 x2 — 2x 2
I L |
x—45x2 —17x —12 23



More Examples
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SR T

x—45x2 —17x — 12 23
(3+h)? -9

lim —F—— =
h—0 h



More Examples

i x—2 1

XT;'ZX2—2X 2

) x2—16 8

lm —————————— = —
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More Examples

i X —2 _1
XT;'2X2—2X_2
x2—16 8

lim —— — =0
b Bx? — 17x — 12

2
. (3+h)?*-9
jim BT =9 _ g
h—0 h
We can manipulate the functions in an algebraic way to make
limit computations more apparent.



Consider the function f(x) = log(x?> — x — 2)...



That's it for today!
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