Math 1 Lecture 12

Dartmouth College

Friday 10-07-16

Contents

Reminders/Announcements

Geometric Sequences

Using the Definition of Convergence

More Examples

Limits of Functions

Reminders/Announcements

- WebWork due Monday
- Quiz Monday
- Written Homework due Wednesday

Geometric Sequences

A sequence is geometric if it is of the form

$$
\left\{a \cdot r^{n}\right\}_{n=0}^{\infty}
$$

with a, r in \mathbb{R}. We call r the common ratio.

Consider the sequence

$$
\left\{2 \cdot 3^{n}\right\}_{n=0}^{\infty}
$$

Consider the sequence

$$
\left\{2 \cdot 3^{n}\right\}_{n=0}^{\infty}
$$

Monotone? Increasing. Bounded? No.
Convergent? No.

Consider the sequence

$$
\left\{2 \cdot\left(\frac{1}{3}\right)^{n}\right\}_{n=0}^{\infty}
$$

Consider the sequence

$$
\left\{2 \cdot\left(\frac{1}{3}\right)^{n}\right\}_{n=0}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Yes. By the first term.
Convergent? Yep. It converges to zero.

For what values of r does a geometric sequence converge?

For what values of r does a geometric sequence converge?
A geometric sequence converges if and only if r in $(-1,1]$.

For what values of r does a geometric sequence converge?
A geometric sequence converges if and only if r in $(-1,1]$.
Fixed a typo here from last time σ^{*}

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 .

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$.

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$.

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes!

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes! So what?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes! So what?

A sequence is convergent if we can always find an N no matter how small we choose $\varepsilon>0$.

More Examples of Sequences

Consider the sequence

$$
\left\{\tan \left(\frac{\pi}{2}-\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

More Examples of Sequences

Consider the sequence

$$
\left\{\tan \left(\frac{\pi}{2}-\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Increasing.
Bounded? No.
Convergent? No way!

More Examples of Sequences

Consider the sequence

$$
\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}
$$

More Examples of Sequences

Consider the sequence

$$
\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}
$$

Monotone? Decreasing.
Bounded? By the first term...
Convergent? Yes. Notice that

$$
\begin{aligned}
a_{n} & =(\sqrt{n+1}-\sqrt{n}) \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}}
\end{aligned}
$$

which converges to zero.

Limits of Functions

The notion of a limit is not just useful for sequences.

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$ "the limit of f as x approaches a ".

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$ "the limit of f as x approaches a ".
$\lim _{x \rightarrow a^{+}} f(x)$

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$ "the limit of f as x approaches a ".
$\lim _{x \rightarrow a^{+}} f(x)$ "the limit as x approaches a of f from the right".

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$ "the limit of f as x approaches a ".
$\lim _{x \rightarrow a^{+}} f(x)$ "the limit as x approaches a of f from the right".

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

Limits of Functions

The notion of a limit is not just useful for sequences. We will talk about the precise definition on Monday, but today we will give an intuitive idea for the following notations:
$\lim _{x \rightarrow a} f(x)$ "the limit of f as x approaches a ".
$\lim _{x \rightarrow a^{+}} f(x)$ "the limit as x approaches a of f from the right".
$\lim _{x \rightarrow a^{-}} f(x)$ "the limit as x approaches a of f from the left".

Write out $f(x)$ as a function defined in "pieces".

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=\infty$
$\lim _{x \rightarrow-1^{-}} f(x)=1$
$\lim _{x \rightarrow-1^{+}} f(x)=0$
$\lim _{x \rightarrow 1^{-}} f(x)=0$
$\lim _{x \rightarrow 1^{+}} f(x)=1$
$f(-1)=f(1)=0$.

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\lim _{x \rightarrow-1^{-}} f(x)=\infty$
$\lim _{x \rightarrow-1^{+}} f(x)=-\infty$

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=1$
$\lim _{x \rightarrow-\infty} f(x)=1$
$\lim _{x \rightarrow-1^{-}} f(x)=3 / 2$
$\lim _{x \rightarrow-1^{+}} f(x)=3 / 2$
$\lim _{x \rightarrow-1} f(x)=3 / 2$
$\lim _{x \rightarrow 1^{-}} f(x)=\infty$
$\lim _{x \rightarrow 1^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 1} f(x)$ is undefined or "does not exist"

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=1$
$\lim _{x \rightarrow-\infty} f(x)=1$
$\lim _{x \rightarrow-1^{-}} f(x)=3 / 2$
$\lim _{x \rightarrow-1^{+}} f(x)=3 / 2$
$\lim _{x \rightarrow-1} f(x)=3 / 2$
$\lim _{x \rightarrow 1^{-}} f(x)=\infty$
$\lim _{x \rightarrow 1^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 1} f(x)$ is undefined or "does not exist"

Note that limits can tell us about the behavior of a function even when the function is undefined!

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=1$
$\lim _{x \rightarrow-\infty} f(x)=1$
$\lim _{x \rightarrow-1^{-}} f(x)=3 / 2$
$\lim _{x \rightarrow-1^{+}} f(x)=3 / 2$
$\lim _{x \rightarrow-1} f(x)=3 / 2$
$\lim _{x \rightarrow 1^{-}} f(x)=\infty$
$\lim _{x \rightarrow 1^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 1} f(x)$ is undefined or "does not exist"

Note that limits can tell us about the behavior of a function even when the function is undefined! ${ }^{\boldsymbol{\sigma}}$

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=1$
$\lim _{x \rightarrow-\infty} f(x)=1$
$\lim _{x \rightarrow-1^{-}} f(x)=3 / 2$
$\lim _{x \rightarrow-1^{+}} f(x)=3 / 2$
$\lim _{x \rightarrow-1} f(x)=3 / 2$
$\lim _{x \rightarrow 1^{-}} f(x)=\infty$
$\lim _{x \rightarrow 1^{+}} f(x)=-\infty$
$\lim _{x \rightarrow 1} f(x)$ is undefined or "does not exist"

Note that limits can tell us about the behavior of a function even when the function is undefined! © Huh?

For the function $f(x)$ given on the previous slide we have $\lim _{x \rightarrow-7 / 3} f(x)=-3 / 4$
$\lim _{x \rightarrow 3 / 2} f(x)=2 / 5$
$\lim _{x \rightarrow-1^{-}} f(x)=-\infty$
$\lim _{x \rightarrow-1^{+}} f(x)=\infty$
$\lim _{x \rightarrow 1} f(x)$ "does not exist".

For the function $f(x)$ given on the previous slide we have $\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\lim _{x \rightarrow 0} f(x)=f(0)=1$.

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\lim _{x \rightarrow 0} f(x)=f(0)=1$.
Sometimes the limit is just the value of the function.

For the function $f(x)$ given on the previous slide we have
$\lim _{x \rightarrow \infty} f(x)=\infty$
$\lim _{x \rightarrow-\infty} f(x)=-\infty$
$\lim _{x \rightarrow 0} f(x)=f(0)=1$.
Sometimes the limit is just the value of the function. This is what it means for a function to be "continuous" as we will see later.

Asymptotes

Asymptotes for us will be vertical or horizontal.

Asymptotes

Asymptotes for us will be vertical or horizontal.
A function $f(x)$ has a vertical asymptote $x=a(a$ in $\mathbb{R})$ if $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.

Asymptotes

Asymptotes for us will be vertical or horizontal.
A function $f(x)$ has a vertical asymptote $x=a(a$ in $\mathbb{R})$ if $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.

A function $f(x)$ has a horizontal asymptote $y=L(L$ in $\mathbb{R})$ if $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty}=L$.

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=$

More Examples as Time Permits

$$
\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4
$$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$ Does Not Exist

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$ Does Not Exist
$\lim _{x \rightarrow 0^{+}} \log x=$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$ Does Not Exist
$\lim _{x \rightarrow 0^{+}} \log x=-\infty$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$ Does Not Exist
$\lim _{x \rightarrow 0^{+}} \log x=-\infty$
$\lim _{x \rightarrow-\pi / 2} \frac{\sin (\cos x)}{\cos x}=$

More Examples as Time Permits

$\lim _{x \rightarrow-4} \frac{x^{2}+10 x+24}{x+4}=-4$
$\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=$ Does Not Exist
$\lim _{x \rightarrow 0} \log x=$ Does Not Exist
$\lim _{x \rightarrow 0^{+}} \log x=-\infty$
$\lim _{x \rightarrow-\pi / 2} \frac{\sin (\cos x)}{\cos x}=1$

That's it for today! Have a nice weekend!

That's it for today! Have a nice weekend!

That's it for today! Have a nice weekend!

©

