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Reminders/Announcements

I WebWork due Monday
I Quiz Monday
I Written Homework due Wednesday



Geometric Sequences

A sequence is geometric if it is of the form

{a · rn}∞n=0

with a, r in R. We call r the common ratio.



Consider the sequence

{2 · 3n}∞n=0

Monotone? Increasing.
Bounded? No.
Convergent? No.
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Monotone? Yes. Decreasing.
Bounded? Yes. By the first term.
Convergent? Yep. It converges to zero.
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For what values of r does a geometric sequence converge?

A geometric sequence converges if and only if r in (−1, 1].

Fixed a typo here from last time
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Back to the definition

Consider the sequence

{0.9, 0.99, 0.999, 0.9999, . . . }

It is clear that this sequence converges to 1. But how do we prove
it? Suppose ε = 0.1. Can we find N such that |an − L| < ε for all
n ≥ N? Sure! Take N = 2. What if ε = 0.01? Can we find N
then? Yes! So what?

A sequence is convergent if we can always find an N no matter
how small we choose ε > 0.
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Consider the sequence {
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(
π
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1
n

)}∞
n=1

Monotone? Yes. Increasing.
Bounded? No.
Convergent? No way!
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More Examples of Sequences

Consider the sequence {√
n + 1−

√
n
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Monotone? Decreasing.
Bounded? By the first term. . .
Convergent? Yes. Notice that

an = (
√

n + 1−
√

n)
√

n + 1 +
√

n√
n + 1 +

√
n

= 1√
n + 1 +

√
n

which converges to zero.



More Examples of Sequences

Consider the sequence {√
n + 1−

√
n
}∞

n=1

Monotone? Decreasing.
Bounded? By the first term. . .
Convergent? Yes. Notice that

an = (
√

n + 1−
√

n)
√

n + 1 +
√

n√
n + 1 +

√
n

= 1√
n + 1 +

√
n

which converges to zero.



Limits of Functions

The notion of a limit is not just useful for sequences.

We will talk
about the precise definition on Monday, but today we will give an
intuitive idea for the following notations:

lim
x→a

f (x) “the limit of f as x approaches a”.

lim
x→a+

f (x) “the limit as x approaches a of f from the right”.

lim
x→a−

f (x) “the limit as x approaches a of f from the left”.
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For the function f (x) given on the previous slide we have

limx→∞ f (x) =∞
limx→−∞ f (x) =∞
limx→−1− f (x) = 1
limx→−1+ f (x) = 0
limx→1− f (x) = 0
limx→1+ f (x) = 1
f (−1) = f (1) = 0.



x

y

f (x) = x(x−1)2(x+2)
x+1



For the function f (x) given on the previous slide we have
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limx→−∞ f (x) = −∞
limx→−1− f (x) =∞
limx→−1+ f (x) = −∞
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y

f (x) = (x+1)(x−2)
(x+1)(x−1)



For the function f (x) given on the previous slide we have

limx→∞ f (x) = 1
limx→−∞ f (x) = 1
limx→−1− f (x) = 3/2
limx→−1+ f (x) = 3/2
limx→−1 f (x) = 3/2
limx→1− f (x) =∞
limx→1+ f (x) = −∞
limx→1 f (x) is undefined or “does not exist”

Note that limits can tell us about the behavior of a function even
when the function is undefined! Huh?
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f (x) = (x+1)(2x−3)(3x+7)
(x+1)2(2x−3)(3x+7)

(3/2, 2/5)

(−7/3,−3/4)



For the function f (x) given on the previous slide we have

limx→−7/3 f (x) = −3/4
limx→3/2 f (x) = 2/5
limx→−1− f (x) = −∞
limx→−1+ f (x) =∞
limx→1 f (x) “does not exist”.
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y

f (x) = 1
x+1 + x

2



For the function f (x) given on the previous slide we have

limx→∞ f (x) =∞
limx→−∞ f (x) = −∞
limx→0 f (x) = f (0) = 1.

Sometimes the limit is just the value of the function. This is what
it means for a function to be “continuous” as we will see later.
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Asymptotes

Asymptotes for us will be vertical or horizontal.

A function f (x) has a vertical asymptote x = a (a in R) if
limx→a− f (x) = ±∞ or limx→a+ f (x) = ±∞.

A function f (x) has a horizontal asymptote y = L (L in R) if
limx→∞ f (x) = L or limx→−∞ = L.
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More Examples as Time Permits

limx→−4
x2+10x+24

x+4 =

−4

limx→0 sin
(

1
x

)
= Does Not Exist

limx→0 log x = Does Not Exist

limx→0+ log x = −∞

limx→−π/2
sin(cos x)

cos x = 1
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