Math 1 Lecture 11

Dartmouth College

Wednesday 10-05-16

Contents

Reminders/Announcements

Convergence

Geometric Sequences

Using the Definition of Convergence

More Examples

Reminders/Announcements

- WebWork due Friday
- Thursday x-hour trig review

Recall the definition

A sequence is said to converge to a limit L if for every $\varepsilon>0$ there exists a positive integer N such that

$$
\left|a_{n}-L\right|<\varepsilon
$$

for every $n \geq N$.

Recall the definition

A sequence is said to converge to a limit L if for every $\varepsilon>0$ there exists a positive integer N such that

$$
\left|a_{n}-L\right|<\varepsilon
$$

for every $n \geq N$. It is common to package this all together with the following notation:

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Recall the definition

A sequence is said to converge to a limit L if for every $\varepsilon>0$ there exists a positive integer N such that

$$
\left|a_{n}-L\right|<\varepsilon
$$

for every $n \geq N$. It is common to package this all together with the following notation:

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

When a sequence does not converge we say it diverges or "fails to have a limit".

Consider the sequence

$$
\left\{1 /\left(n^{3}\right)\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{1 /\left(n^{3}\right)\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Yes. $M=1$.
Convergent? Yes. $L=0$.

Consider the sequence

$$
\left\{1 /\left(n^{-3}\right)\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{1 /\left(n^{-3}\right)\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Increasing. Bounded? No.
Convergent? No.

Consider the sequence

$$
\left\{1 /\left(n^{p}\right)\right\}_{n=1}^{\infty} \quad p \text { in } \mathbb{R}
$$

Consider the sequence

$$
\left\{1 /\left(n^{p}\right)\right\}_{n=1}^{\infty} \quad p \text { in } \mathbb{R}
$$

Monotone? Always monotone. If $p>0$, then decreasing. If $p<0$, then increasing. What about when $p=0$?
Bounded? Only when $p \geq 0$. What's a bound?
Convergent? Only when $p \geq 0$. When $p=0, \lim _{n \rightarrow \infty} a_{n}=1$. What about when $p>0$?

Consider the sequence

$$
\{0,1,0,0,1,0,0,0,1,0,0,0,0,1, \ldots\}
$$

Consider the sequence

$$
\{0,1,0,0,1,0,0,0,1,0,0,0,0,1, \ldots\}
$$

Monotone? Nah.
Bounded? Yep.
Convergent? No way!

Consider the sequence

$$
\{0,1,0,0,1 / 2,0,0,0,1 / 3,0,0,0,0,1 / 4, \ldots\}
$$

Consider the sequence

$$
\{0,1,0,0,1 / 2,0,0,0,1 / 3,0,0,0,0,1 / 4, \ldots\}
$$

Monotone? Nope.
Bounded? Yes!
Convergent? Yes. $\lim _{n \rightarrow \infty} a_{n}=0$.

Consider the sequence

$$
\{0.9,0.99,0.999, \ldots\}
$$

Consider the sequence

$$
\{0.9,0.99,0.999, \ldots\}
$$

Monotone? Yes.
Bounded? Yes.
Convergent? Yes. Haven't you heard someone say that $0 . \overline{9}=1$?

Consider the sequence

$$
\left\{(-1)^{n}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{(-1)^{n}\right\}_{n=1}^{\infty}
$$

Monotone? No.
Bounded? Yes.
Convergent? Nope.

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}
$$

Monotone? No.
Bounded? Yep.
Convergent? Yup.

Consider the sequence

$$
\left\{\frac{\cos (n \pi)}{n}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\frac{\cos (n \pi)}{n}\right\}_{n=1}^{\infty}
$$

Monotone? Nope.
Bounded? Yup.
Convergent? Yup.

Consider the sequence

$$
\left\{\frac{n+1}{n-1}\right\}_{n=2}^{\infty}
$$

Consider the sequence

$$
\left\{\frac{n+1}{n-1}\right\}_{n=2}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Yes.
Convergent? Yes. $L=1$.

Consider the sequence

$$
\left\{\frac{2 n^{2}+n+5}{31 n^{2}+100 n+82364}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\frac{2 n^{2}+n+5}{31 n^{2}+100 n+82364}\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Increasing.
Bounded? Yes. . . by the limit.
Convergent? Yes. $\lim _{n \rightarrow \infty} a_{n}=2 / 31$.

Consider the sequence

$$
\left\{\frac{(2 n-1)(1-5 n)}{2 n(n+1)}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\frac{(2 n-1)(1-5 n)}{2 n(n+1)}\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Yes. $M=5$ works. $M=1000$ also works...
Convergent? Yes. The limit is $2 \cdot(-5) / 2=-5$.

Consider the sequence

$$
\left\{e^{\left(-n^{2}\right)}\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{e^{\left(-n^{2}\right)}\right\}_{n=1}^{\infty}
$$

Monotone? Yes. It is decreasing.
Bounded? Yep. By the first term.
Convergent? The limit is zero.

Consider the sequence

$$
\left\{\log _{e}\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\log _{e}\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Nope.
Convergent? Nope. It diverges to $-\infty$.

Is a convergent sequence necessarily bounded?

Is a convergent sequence necessarily bounded? Yes!

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent?

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No!

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example?

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example?
Is a bounded and monotone sequence necessarily convergent?

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example?
Is a bounded and monotone sequence necessarily convergent? Yes!

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example? Is a bounded and monotone sequence necessarily convergent? Yes! Is a convergent sequence necessarily bounded and monotone?

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example?
Is a bounded and monotone sequence necessarily convergent? Yes! Is a convergent sequence necessarily bounded and monotone? No!

Is a convergent sequence necessarily bounded? Yes!
Is a bounded sequence necessarily convergent? No! Example?
Is a bounded and monotone sequence necessarily convergent? Yes! Is a convergent sequence necessarily bounded and monotone? No! Example?

Geometric Sequences

A sequence is geometric if it is of the form

$$
\left\{a \cdot r^{n}\right\}_{n=0}^{\infty}
$$

with a, r in \mathbb{R}. We call r the common ratio.

Consider the sequence

$$
\left\{2 \cdot 3^{n}\right\}_{n=0}^{\infty}
$$

Consider the sequence

$$
\left\{2 \cdot 3^{n}\right\}_{n=0}^{\infty}
$$

Monotone? Increasing. Bounded? No.
Convergent? No.

Consider the sequence

$$
\left\{2 \cdot\left(\frac{1}{3}\right)^{n}\right\}_{n=0}^{\infty}
$$

Consider the sequence

$$
\left\{2 \cdot\left(\frac{1}{3}\right)^{n}\right\}_{n=0}^{\infty}
$$

Monotone? Yes. Decreasing.
Bounded? Yes. By the first term.
Convergent? Yep. It converges to zero.

For what values of r does a geometric sequence converge?

For what values of r does a geometric sequence converge?
A geometric sequence converges if and only if r in $(-1,1)$.

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 .

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$.

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$.

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes!

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes! So what?

Back to the definition

Consider the sequence

$$
\{0.9,0.99,0.999,0.9999, \ldots\}
$$

It is clear that this sequence converges to 1 . But how do we prove it? Suppose $\varepsilon=0.1$. Can we find N such that $\left|a_{n}-L\right|<\varepsilon$ for all $n \geq N$? Sure! Take $N=2$. What if $\varepsilon=0.01$? Can we find N then? Yes! So what?

A sequence is convergent if we can always find an N no matter how small we choose $\varepsilon>0$.

Consider the sequence

$$
\left\{\tan \left(\frac{\pi}{2}-\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\left\{\tan \left(\frac{\pi}{2}-\frac{1}{n}\right)\right\}_{n=1}^{\infty}
$$

Monotone? Yes. Increasing.
Bounded? No.
Convergent? No way!

Consider the sequence

$$
\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}
$$

Consider the sequence

$$
\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}
$$

Monotone? Decreasing.
Bounded? By the first term... Convergent? Yes. Notice that

$$
\begin{aligned}
a_{n} & =(\sqrt{n+1}-\sqrt{n}) \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\
& =\frac{1}{\sqrt{n+1}+\sqrt{n}}
\end{aligned}
$$

which converges to zero.

OK that's it! Come back during x-hour tomorrow for some trig review/practice if you feel like you need it!

