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f (x) = arcsin(x)

To make sin x one-to-one we restrict to the domain [−π
2 ,

π
2 ]. Then

define the arcsine function by the following.

arcsin x = y ⇐⇒ sin y = x

I The domain of arcsin x is [−1, 1].
I The range of arcsin x is [−π

2 ,
π
2 ].

I For all x in [−1, 1] we have that

sin(arcsin x) = x

I For all x in [−π
2 ,

π
2 ] we have that

arcsin(sin x) = x
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f (x) = arccos(x)

To make cos x one-to-one we restrict to the domain [0, π]. Then
define the arccosine function by the following.

arccos x = y ⇐⇒ cos y = x

I The domain of arccos x is [−1, 1].
I The range of arccos x is [0, π].
I For all x in [−1, 1] we have that

cos(arccos x) = x

I For all x in [0, π] we have that

arccos(cos x) = x
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f (x) = arctan(x)

To make tan x one-to-one we restrict to the domain (−π
2 ,

π
2 ).

Then define the arctangent function by the following.

arctan x = y ⇐⇒ tan y = x

I The domain of arctan x is R.
I The range of arctan x is (−π

2 ,
π
2 ).

I For all x in R we have that

tan(arctan x) = x

I For all x in (−π
2 ,

π
2 ) we have that

arctan(tan x) = x
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Please find arcsin(
√

2/2).

Solution:
We want to find an angle θ with sin(θ) =

√
2/2 and

−π/2 ≤ θ ≤ π/2. Why? Because that is the range of arcsin(x).
OK fine, θ = π/4.
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Please find arctan(
√

3).

Solution:
We want to find an angle θ with tan(θ) =

√
3 and

−π/2 ≤ θ ≤ π/2. . . θ = π/3.
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Please find arcsin(sin(3π/4)).

Solution:
These functions are inverses of each other, so the answer is
obviously 3π/4 right? No! No! No! No! No! No! No! Why?
Because 3π/4 is not in the range of arcsin(x)! With this in mind
we see that

arcsin(sin(3π/4)) = arcsin(
√

2/2) = π/4.

UGH!
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Practice Using the Trigonometry Review Sheet!

https://math.dartmouth.edu/˜m1f16/MATH1Docs/
TrigonometryReview.pdf
It is nicely organized IMHO.
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3)).

Solution:

sin(arctan(
√

3)) = sin(π/3) =
√

3/2.



Please find sin(arctan(
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Please find tan(arcsin(12/13)).

Solution: This is a bit more difficult since we can’t find θ directly.
However, if we let θ = arcsin(12/13) we can draw a helpful picture.

θ
a

1213

What is a? Using Pythagoras we see that a = 5. Now we just have
to find tan θ for this particular (unknown) θ. We see that
tan θ = 12/5.
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Please find a formula for cos(arctan(x)).

Solution: Again, we can’t find θ directly. However, if we let
θ = arctan(x) we can draw a helpful picture.

θ
1

xc

What is c? Using Pythagoras we see that c =
√

x2 + 1. Now we
just have to find cos θ for this particular (unknown) θ. We see that
cos θ = 1/

√
x2 + 1.
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We will now take 15 minutes for a quiz. . . insert meme here.



Recall. . .

What does it mean for a sequence to be increasing?

an+1 > an for every n. Similarly for decreasing.

What does it mean for a sequence to be weakly increasing?
an+1 ≥ an for every n. Similarly for weakly decreasing.
For example, a constant sequence is weakly increasing but not
increasing.

What does it mean for a sequence to be bounded?
There exists M ≥ 0 such that |an| ≤ M for every n.

What does it mean for a sequence to be monotone?
Either weakly increasing or weakly decreasing.
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Convergence

The definition of convergence can be confusing at first. . .

A sequence is said to converge to a limit L if for every ε > 0
there exists a positive integer N such that

|an − L| < ε

for every n ≥ N.

So before we really try to understand convergence, let’s get an
intuitive idea about what it means for a sequence to converge or
“approach” a limit. . .
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Consider the sequence {1/n}∞n=1.

Is this sequence bounded? Yes.
Is this sequence decreasing? Yes.
Is this sequence weakly decreasing? Yes.
Is this sequence monotone? Yes.
Does this sequence converge? Yes. To L = 0. Why? No matter
how small an ε we choose, we can always find N so that an is
within ε of 0 for n ≥ N.
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{
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.

Is this sequence bounded? Nope.
Is this sequence decreasing? Nope. It’s increasing!
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Is this sequence monotone? Yes.
Does this sequence converge? No. Why? The terms get arbitrarily
large.
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a2 = 0.941176470588235
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a100 = 0.562847608453838
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a10000 = 0.555628395871065

Is this sequence converging? Yes! To what? Well,

9/5 = 0.5555555555 . . .
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