MATH 1 Homework 7 Solutions: total 53 points

Assigned October 26th, due November 2nd

1. (total 17 pts$)$
(a) $\frac{d}{d x}\left(x^{2} \sin (x)\right)=\frac{d\left(x^{2}\right)}{d x} \sin (x)+x^{2} \frac{d}{d x} \sin (x)=2 x \sin (x)+x^{2} \cos (x)$ by the product rule
(b) $\frac{d}{d x}\left(\frac{x^{2}+5 x+3}{3 x-2}\right)=\frac{\left(x^{2}+5 x+3\right)^{\prime}(3 x-2)-\left(x^{2}+5 x+3\right)(3 x-2)^{\prime}}{(3 x-2)^{2}}=$

$$
\frac{(2 x+5)(3 x-2)-3\left(x^{2}+5 x+3\right)}{(3 x-2)^{2}}
$$

(c) $\frac{d}{d x}\left(\frac{3 \cos (x)}{x}\right)=\frac{(3 \cos (x))^{\prime} x-3 \cos (x)(x)^{\prime}}{x^{2}}=\frac{-3 x \sin (x)-3 \cos (x)}{x^{2}}$
2. $\frac{d}{d x}(\sec (x))=\frac{d}{d x}\left(\frac{1}{\cos (x)}\right)=\frac{(1)^{\prime} \cos (x)-1 \cdot(\cos (x))^{\prime}}{\cos ^{2}(x)}=\frac{0-(-\sin (x))}{\cos ^{2}(x)}=\frac{\sin (x)}{\cos ^{2}(x)}=$
$\frac{1}{\cos (x)} \frac{\sin (x)}{\cos (x)}=\sec (x) \tan (x)$
3. We need to take the derivative $n+1$ times: after the first derivative, we get an $(n-1)$-degree polynomial, after the second: an $(n-2)$-degree one, after the third an $(n-3)$-degree one etc. and we get the constant zero function when we have to take the derivative of a constant, or a 0 -degree polynomial. We will get a 0 -degree polynomial after taking n-derivatives. In total, this will make $n+1$ derivatives.

Example: let $P(x)=x^{3}+x^{2}+x+1$ a 3-degree polynomial, then $P^{\prime}(x)=3 x^{2}+2 x+1$, $P^{\prime \prime}(x)=6 x+2, P^{(3)}(x)=6$, and finally $P^{(4)}(x)=0$.
4. (a) The derivative of $h(k(x))$ is $h^{\prime}(k(x)) \cdot k^{\prime}(x)$.
(b) Let's think of $h(k(x))$ as the inside function and $g(x)$ as the outer function. Then the chain rule says $[g(h(k(x)))]^{\prime}=g^{\prime}(h(k(x))) \cdot[h(k(x))]^{\prime}$. We know from part a that $[h(k(x))]^{\prime}=h^{\prime}(k(x)) \cdot k^{\prime}(x)$, so $[g(h(k(x)))]^{\prime}=g^{\prime}(h(k(x))) \cdot h^{\prime}(k(x)) \cdot k^{\prime}(x)$.
(c) We know from part b that $f^{\prime}(x)=g^{\prime}(h(k(x))) \cdot h^{\prime}(k(x)) \cdot k^{\prime}(x)$, so $f^{\prime}(2)=g^{\prime}(h(k(2))) \cdot$ $h^{\prime}(k(2)) \cdot k^{\prime}(2)$. Now we just need to plug in.

$$
\begin{aligned}
f^{\prime}(2) & =g^{\prime}(h(k(2))) \cdot h^{\prime}(k(2)) \cdot k^{\prime}(2) \\
& =g^{\prime}(h(3)) \cdot h^{\prime}(3) \cdot 6 \\
& =g^{\prime}(4) \cdot 5 \cdot 6 \\
& =2 \cdot 5 \cdot 6 \\
& =60
\end{aligned}
$$

5. (a) Let $g(x)=\cos (x)$ and let $h(x)=\sqrt{x}$, then $f(x)=g(h(x))$. Since $g^{\prime}(x)=-\sin (x)$ and $h^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$, then by the chain rule, we have $f^{\prime}(x)=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}$.
(b) Let $f(x)=e^{x}$ and let $h(x)=x \sin (x)$, then $g(x)=f(h(x))$. We need to use the product rule to find $h^{\prime}(x)$, so we get $h^{\prime}(x)=\sin (x)+x \cos (x)$. Then by the chain rule, we have $g^{\prime}(x)=e^{x \sin (x)} \cdot(\sin (x)+x \cos (x))$.
(c) Let $f(x)=\sin (x), g(x)=e^{x}$, and $k(x)=2 x-5$, then $h(x)=f(g(k(x)))$. We can use what we did in the previous question to find that $h^{\prime}(x)=\cos \left(e^{2 x-5}\right) \cdot\left(e^{2 x-5}\right) \cdot 2$.
