MATH 1 Homework 7 Solutions: total 53 points

Assigned October 26th, due November 2nd

1. (total 17 pts)

(a)
$$\frac{d}{dx}(x^2\sin(x)) = \frac{d(x^2)}{dx}\sin(x) + x^2\frac{d}{dx}\sin(x) = 2x\sin(x) + x^2\cos(x)$$
 by the product rule
(b) $\frac{d}{dx}\left(\frac{x^2+5x+3}{3x-2}\right) = \frac{(x^2+5x+3)'(3x-2)-(x^2+5x+3)(3x-2)'}{(3x-2)^2} = \frac{(2x+5)(3x-2)-3(x^2+5x+3)}{(3x-2)^2}$
(c) $\frac{d}{dx}\left(\frac{3\cos(x)}{x}\right) = \frac{(3\cos(x))'x-3\cos(x)(x)'}{x^2} = \frac{-3x\sin(x)-3\cos(x)}{x^2}$

2.
$$\frac{d}{dx}(\sec(x)) = \frac{d}{dx}\left(\frac{1}{\cos(x)}\right) = \frac{(1)'\cos(x) - 1\cdot(\cos(x))'}{\cos^2(x)} = \frac{0 - (-\sin(x))}{\cos^2(x)} = \frac{\sin(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \frac{1}{\cos(x)} \frac{\sin(x)}{\cos(x)} = \sec(x)\tan(x)$$

3. We need to take the derivative n + 1 times: after the first derivative, we get an (n - 1)-degree polynomial, after the second: an (n - 2)-degree one, after the third an (n - 3)-degree one etc. and we get the constant zero function when we have to take the derivative of a constant, or a 0-degree polynomial. We will get a 0-degree polynomial after taking *n*-derivatives. In total, this will make n + 1 derivatives.

Example: let $P(x) = x^3 + x^2 + x + 1$ a 3-degree polynomial, then $P'(x) = 3x^2 + 2x + 1$, P''(x) = 6x + 2, $P^{(3)}(x) = 6$, and finally $P^{(4)}(x) = 0$.

- 4. (a) The derivative of h(k(x)) is $h'(k(x)) \cdot k'(x)$.
 - (b) Let's think of h(k(x)) as the inside function and g(x) as the outer function. Then the chain rule says $[g(h(k(x)))]' = g'(h(k(x))) \cdot [h(k(x))]'$. We know from part a that $[h(k(x))]' = h'(k(x)) \cdot k'(x)$, so $[g(h(k(x)))]' = g'(h(k(x))) \cdot h'(k(x)) \cdot k'(x)$.
 - (c) We know from part b that $f'(x) = g'(h(k(x))) \cdot h'(k(x)) \cdot k'(x)$, so $f'(2) = g'(h(k(2))) \cdot h'(k(2)) \cdot k'(2)$. Now we just need to plug in.

$$f'(2) = g'(h(k(2))) \cdot h'(k(2)) \cdot k'(2)$$

= g'(h(3)) \cdot h'(3) \cdot 6
= g'(4) \cdot 5 \cdot 6
= 2 \cdot 5 \cdot 6
= 60

5. (a) Let $g(x) = \cos(x)$ and let $h(x) = \sqrt{x}$, then f(x) = g(h(x)). Since $g'(x) = -\sin(x)$ and $h'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$, then by the chain rule, we have $f'(x) = -\sin(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$.

- (b) Let $f(x) = e^x$ and let $h(x) = x \sin(x)$, then g(x) = f(h(x)). We need to use the product rule to find h'(x), so we get $h'(x) = \sin(x) + x \cos(x)$. Then by the chain rule, we have $g'(x) = e^{x \sin(x)} \cdot (\sin(x) + x \cos(x))$.
- (c) Let $f(x) = \sin(x)$, $g(x) = e^x$, and k(x) = 2x 5, then h(x) = f(g(k(x))). We can use what we did in the previous question to find that $h'(x) = \cos(e^{2x-5}) \cdot (e^{2x-5}) \cdot 2$.