MATH 1 Homework 7

Assigned October 26th, due November 2nd

1. Find the following derivatives:
(a) $\frac{d}{d x}\left(x^{2} \sin (x)\right)$
(b) $\frac{d}{d x}\left(\frac{x^{2}+5 x+3}{3 x-2}\right)$
(c) $\frac{d}{d x}\left(\frac{3 \cos (x)}{x}\right)$
2. Show that

$$
\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)
$$

3. Let $P(x)$ be a polynomial of degree n. How many derivatives of $P(x)$ do you need to take to get the constant 0 function? Explain your answer. Hint: Try a couple of specific examples and see if you can come up with a hypothesis.
4. Suppose $f(x)=g(h(k(x)))$ for some functions g, h, k. Denote the derivative of $k(x)$ as $k^{\prime}(x)$, the derivative of $h(x)$ as $h^{\prime}(x)$, and the derivative of $g(x)$ as $g^{\prime}(x)$.
(a) Using the chain rule, what is the formula for the derivative of $h(k(x))$?
(b) Using the chain rule, what is the formula for the derivative of $g(h(k(x)))$?
(c) Suppose $k(2)=3, k^{\prime}(2)=6, h(3)=4, h^{\prime}(3)=5, g(4)=7$, and $g^{\prime}(4)=2$. Then what is $f^{\prime}(2) ?$
5. (a) Let $f(x)=\cos (\sqrt{x})$. Write $f(x)$ as the composition of two nonidentity functions, and then use the chain rule to find $f^{\prime}(x)$.
(b) Let $g(x)=e^{\sin (x)}$. Write $g(x)$ as the composition of two nonidentity functions, and then use the chain rule to find $g^{\prime}(x)$.
(c) Let $h(x)=\sin \left(e^{2 x-5}\right)$. Write $h(x)$ as the composition of three nonidentity functions, and then use the chain rule to find $h^{\prime}(x)$.
