## MATH 1 Homework 6

Assigned October 19th, due October 26th

1. (a) Use the limit definition to find the slope of the tangent line to $f(x)=x-x^{2}$ at the point $(1,0)$.
Solution: We know that $m=\lim _{h \rightarrow 0} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x-x^{2}-0}{x-1}=\lim _{x \rightarrow 1} \frac{-x(-1+x)}{x-1}=$ $\lim _{x \rightarrow 1}-x=-1$.
(b) Find an equation of the tangent line at the point $(1,0)$.

Solution: If we use point-slope form, we get $y-y_{1}=m\left(x-x_{1}\right)$, which in this case is $y-0=-1(x-1)$, so we have $y=1-x$.
(c) Graph both $f(x)$ and the tangent line at the point $(1,0)$. Be sure to label which is which. Solution: Here, $f(x)$ is red, and the tangent line is blue.

2. (a) Use the limit definition to find the derivative of $f(x)=x^{2}-4 x$.

Solution: We have

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{x \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-4(x+h)-\left(x^{2}-4 x\right)}{h} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-4 x-4 h-x^{2}+4 x}{h} \\
& =\lim _{x \rightarrow 0} \frac{2 x h+h^{2}-4 h}{h} \\
& =\lim _{x \rightarrow 0} \frac{h(2 x+h-4)}{h} \\
& =\lim _{x \rightarrow 0} 2 x+h-4 \\
& =2 x-4
\end{aligned}
$$

(b) Check your work using the power rule.

Solution: The power rule says that the derivative of $x^{n}$ is $n x^{n-1}$, so the derivative of $x^{2}$ is $2 x$ and the derivative of $4 x$ is 4 . Subtracting these gives us the derivative of $f(x)$, so $f^{\prime}(x)=2 x-4$.
(c) Graph $f$ and $f^{\prime}$ (label which is which). Why does it make sense that $f^{\prime}$ is positive, negative, and zero for the $x$ values that it is (when compared to the graph of $f$ )?
Solution: Below is the graph of $f$ (red) and $f^{\prime}$ (blue). $f^{\prime}$ is positive where the graph of $f$ is increasing (and so has positive slope), negative where the graph of $f$ is decreasing (and so has negative slope), and zero where the graph of $f$ is switching from increasing to decreasing (and so has 0 slope).

3. (a) A particle starts by moving up along a vertical line; the graph below is of the height of the particle relative to time. When is the particle moving up? Down? Standing still?


Solution: The particle is moving up when distance along the line is increasing (i.e. when the function is increasing), so when $0 \leq x \leq 1$ and $4 \leq x \leq 6$. It is moving down when the distance moved along the line is decreasing (since it's moving back the way it came), so when $2 \leq x \leq 3$. It is standing still when the distance moved isn't changing, so when $1 \leq x \leq 2$ and $3 \leq x \leq 4$.
(b) Draw a graph of the velocity of the particle relative to time.

Solution:

(c) A second particle starts by moving up along a vertical line; the graph of its velocity relative to time is shown below. When is the particle moving up? Down? Standing still?


Solution: It is moving up when the velocity is positive, so when $0 \leq x \leq 2$. It is moving down when the velocity is negative, so when $3 \leq x \leq 4$. It is standing still when velocity is 0 , so when $2 \leq x \leq 3$.
(d) Draw a graph of the position function.

## Solution:


4. Draw a graph of a function that is:
(a) positive with positive derivative.

## Solution:



In general, we are looking for an increasing function with positive values (we need increasing so the slope of the tangent line at any point in the interval $[0,1]$ on its graph is positive). Let $f(x)=x+1$. Then for $0 \leq x \leq 1$, we have $1 \leq f(x) \leq 2$, so $f(x)$ is positive on the interval $[0,1]$, and its derivative is $f^{\prime}(x)=1$ which is also positive.
(b) negative with positive derivative.

## Solution:



We are still looking for an increasing function, but with negative values. Let $g(x)=x-2$. Then for $0 \leq x \leq 1$, we have $-2 \leq g(x) \leq 2$, so $g(x)$ is negative on the interval $[0,1]$ and its derivative is $g^{\prime}(x)=1$ is positive.
(c) positive with negative derivative.

## Solution:



Now we are looking for a decreasing function with positive values (decreasing so the slope of the tangent line at any point in the interval $[0,1]$ on its graph is negative). Let $h(x)=-x+2$. Then for $0 \leq x \leq 1$, we have $1 \leq h(x) \leq 2$, so $h(x)$ is positive on the interval $[0,1]$, and its derivative is $h^{\prime}(x)=-1$ which is negative.
(d) negative with negative derivative.

Solution:


We are still looking for a decreasing function, but with negative values. Let $j(x)=-x-1$. Then for $0 \leq x \leq 1$, we have $-1 \leq g(x) \leq-2$, so $j(x)$ is negative on the interval $[0,1]$ and its derivative is $j^{\prime}(x)=-1$ is negative.
5. Compute the following derivatives using the rules for computing derivatives. Show your work.
(a) $g^{\prime}(3)$ for $g(x)=3$

Solution: $g(x)=3$, so $g^{\prime}(x)=0$. Therefore $g^{\prime}(3)=0$.
(b) $h^{\prime}(-1)$ for $h(x)=6 e^{x}+x(x-1)$

Solution: $h(x)=6 e^{x}+x(x-1)=6 e^{x}+x^{2}-x$, so $h^{\prime}(x)=6 e^{x}+2 x-1$. Then $h^{\prime}(-1)=6 e^{-1}-2-1=6 e^{-1}-3$.
(c) $j^{\prime}(0)$ for $j(x)=3 x^{6}+x^{2}+x-5 e^{x}$

Solution: $j(x)=3 x^{6}+x^{2}+x-5 e^{x}$, so $j^{\prime}(x)=18 x^{5}+2 x+1-5 e^{x}$. Thus $j^{\prime}(0)=1-5=-4$.
(d) $k^{\prime}(-2)$ for $k(x)=x^{3}-3 x+5$

Solution: $k(x)=x^{3}-3 x+5$, so $k^{\prime}(x)=3 x^{2}-3$. Therefore $k^{\prime}(-2)=3 \cdot 4-3=9$.

