MATH 1 Homework 6

Assigned October 19th, due October 26th

1. (a) Use the limit definition to find the slope of the tangent line to $f(x)=x-x^{2}$ at the point $(1,0)$.
(b) Find an equation of the tangent line at the point $(1,0)$.
(c) Graph both $f(x)$ and the tangent line at the point $(1,0)$. Be sure to label which is which.
2. (a) Use the limit definition to find the derivative of $f(x)=x^{2}-4 x$.
(b) Check your work using the power rule.
(c) Graph f and f^{\prime} (label which is which). Why does it make sense that f^{\prime} is positive, negative, and zero for the x values that it is (when compared to the graph of f)?
3. (a) A particle starts by moving up along a vertical line; the graph below is of the height of the particle relative to time. When is the particle moving up? Down? Standing still?

(b) Draw a graph of the velocity of the particle relative to time.
(c) A second particle starts by moving up along a vertical line; the graph of its velocity relative to time is shown below. When is the particle moving up? Down? Standing still?

(d) Draw a graph of the height of the particle relative to time.
4. Draw a graph of a function that has the following properties on the interval $[0,1]$:
(a) positive with positive derivative.
(b) negative with positive derivative.
(c) positive with negative derivative.
(d) negative with negative derivative.
5. Compute the following derivatives using the rules for computing derivatives. Show your work.
(a) $g^{\prime}(3)$ for $g(x)=3$
(b) $h^{\prime}(-1)$ for $h(x)=6 e^{x}+x(x-1)$
(c) $j^{\prime}(0)$ for $j(x)=3 x^{6}+x^{2}+x-5 e^{x}$
(d) $k^{\prime}(-2)$ for $k(x)=x^{3}-3 x+5$
