MATH 1 Homework 5 Solutions

Assigned October 12th, due October 19th

1. (a) To have $\frac{1}{(x-1)^{4}}>10000$, we need

$$
\begin{gathered}
\frac{1}{10000}>(x-1)^{4} \\
\sqrt[4]{\frac{1}{10000}}>|x-1| \\
\frac{1}{10}>|x-1|
\end{gathered}
$$

so x needs to be at most 0.1 away from 1 .
(b) In this case,

$$
\begin{gathered}
\frac{1}{160000}>(x-1)^{4} \\
\sqrt[4]{\frac{1}{160000}}>|x-1| \\
\frac{1}{20}>|x-1|
\end{gathered}
$$

so x needs to be at most $1 / 20=0.05$ away from 1 .
(c) Since the value of f gets larger and larger as x approaches $1, \lim _{x \rightarrow 1} f(x)=+\infty$.
2. Let

$$
f(x)= \begin{cases}x & \text { if } x \neq 3 \\ 0 & \text { if } x=3\end{cases}
$$

and $g(x)=x+2$. Then $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} x+2=3$. But $\lim _{x \rightarrow 1} f(g(x))=\lim _{x \rightarrow 1} f(x+2)=\lim _{x \rightarrow 1} x+2=$ $1+2=3$, while $f(3)=0$.
3. Let $f(x)=\frac{x+1}{x-3}$. Then $f(5)=6 / 2=3, f$ has a vertical asymptote at $x=3$, and a horizontal asymptote at $y=1$.
4. (a) We can take any delta $\delta<0.07$ (rough approximation; we might be able to take δ a bit lager than that, but for $\delta<0.07$, it is guaranteed to work)
(b) If we take $\delta<0.08$, then $|g(x)-1.5|<0.2$. If we take any delta $\delta<0.04$, then $|g(x)-1.5|<0.1$ (again, a rough approximation based on the graph).
5. The floor function, ceiling function, and $\tan (x)$ all have infinitely many discontinuities: the floor and ceiling functions both have jump discontinuities at every integer, and $\tan (x)$ has asymptotes at $k \pi / 2$ where k is an integer.
6. (a) $f(x)=\cos \left(\frac{x+3}{x^{2}-2}\right)$ at $x=5$. Yes - rational functions are continuous everywhere in their domain, and 5 is in the domain of $\frac{x+3}{x^{2}-2} \cdot \cos (x)$ is continuous everywhere. Thus their composition is continuous.
(b) $g(x)=\tan \left(\frac{x-\frac{\pi}{2}}{x-\pi+1}\right)$ at $x=\pi$. Plugging in $x=\pi$ to the inner function yields $\frac{\pi}{2}$. But $\pi / 2$ is not in the domain of tan. Therefore the function is not continuous.
(c) $h(x)=\ln \left(x^{2}-3\right)$ at $x=2.2^{2}-3=1$ is in the domain of \ln, which is a continuous function on its domain. Thus this is continuous.
(d) $k(x)=2^{\log _{3}(\sqrt{x})}$ at $x=17 . \sqrt{17}$ is in the domain of $\log _{3}$, so $\log _{3}(\sqrt{x})$ is continuous at 17. 2^{x} is continuous everywhere. Thus their composition is continuous.
7. (a) $\lim _{x \rightarrow 0} x^{2} \tan ^{-1}\left(\frac{1}{x}\right) .-\pi / 2 \leq \tan ^{-1}\left(\frac{1}{x}\right) \leq \pi / 2$, so $-\frac{\pi x^{2}}{2} \leq \tan ^{-1}\left(\frac{1}{x}\right) \leq \frac{\pi x^{2}}{2}$. If we plug in zero, we get 0 on both sides of the inequality. Thus the limit is zero.
(b) $\lim _{\substack{x \rightarrow 0 \\ e .}} x e^{\sin \left(\frac{1}{x}\right)}$. We know that $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$, so raising e to all sides yields $e^{-1} \leq e^{\sin \left(\frac{1}{x}\right)} \leq$ To be able to use the squeeze theorem, we want to multiply throgh by x. However, depending on whether $x \geq 0$ or $x<0$, we have to consider two cases: multiplying through by a positive number keeps the inequality signs unchanged, while multipliyng by a negative number reverses the signs.
Case 1: $x \geq 0$. Then multiplying through by x gives $x e^{-1} \leq x e^{\sin \left(\frac{1}{x}\right)} \leq x e$. Then $\lim _{x \rightarrow 0^{+}} x e^{-1}=0, \lim _{x \rightarrow 0^{+}} x e=0$, so $\lim _{x \rightarrow 0^{+}} x e^{\sin \left(\frac{1}{x}\right)}=0$.

Case 2: $x<0$. Then multiplying through by x gives $x e^{-1} \geq x e^{\sin \left(\frac{1}{x}\right)} \geq x e$. Then $\lim _{x \rightarrow 0^{-}} x e^{-1}=0, \lim _{x \rightarrow 0^{-}} x e=0$, so $\lim _{x \rightarrow 0^{-}} x e^{\sin \left(\frac{1}{x}\right)}=0$.
Since both one- sided limits $\lim _{x \rightarrow 0^{+}} x e^{\sin \left(\frac{1}{x}\right)}=0, \lim _{x \rightarrow 0^{-}} x e^{\sin \left(\frac{1}{x}\right)}=0$, then $\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}=0$.
(c) $\lim _{x \rightarrow-3}(x+3) \cos \left(\frac{1}{x+3}\right)$. We know that $-1 \leq \cos (x) \leq 1$, so $-1 \leq \cos \left(\frac{1}{x+3}\right) \leq 1$.

As above, we have two cases: when $x \geq-3$ and when $x<-3$.
Case 1: $x \geq-3$. Then multiplying through by $x-3$ gives $-(x+3) \leq(x+3) \cos \left(\frac{1}{x+3}\right) \leq$ $(x+3)$. Then $\lim _{x \rightarrow-3^{+}}-(x+3)=0, \lim _{x \rightarrow-3^{+}}(x+3)=0$, so $\lim _{x \rightarrow-3^{+}}(x+3) \cos \left(\frac{1}{x+3}\right)=0$.

Case 2: $x<-3$. Then multiplying through by $x-3$ gives $-(x+3) \geq(x+3) \cos \left(\frac{1}{x+3}\right) \geq$ $\left(x+3\right.$. Then $\lim _{x \rightarrow-3^{-}}-(x+3)=0, \lim _{x \rightarrow-3^{-}}(x+3)=0$, so $\lim _{x \rightarrow-3^{-}}(x+3) \cos \left(\frac{1}{x+3}\right)=0$. Since both one-sided limits are $0, \lim _{x \rightarrow-3}(x+3) \cos \left(\frac{1}{x+3}\right)=0$.
8. (a) $\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$. We can multiply top and bottom by $\sqrt{x+3}+\sqrt{3}$ to get $\frac{x+3-3}{x(\sqrt{x+3}+\sqrt{3})}$. We can cancel the x 's to get $\frac{1}{\sqrt{x+3}+\sqrt{3}}$. To find the limit, we can now plug in 0 (since this is continuous and 0 is in the domain) to get that the limit is $\frac{1}{2 \sqrt{3}}$.
(b) $\lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}-3}{x-2}$. We can multiply top and bottom by $\sqrt{4 x+1}+3$ to get $\frac{4 x+1-9}{(x-2)(\sqrt{4 x+1}+3)}$. The numerator is $4 x-8=4(x-2)$, so the fraction can be rewritten as $\frac{4(x-2)}{(x-2)(\sqrt{4 x+1}+3)}$. If we cancel the $x-2$, we get $\frac{4}{\sqrt{4 x+1}+3}$. This is a continuous function, and 2 is now in its domain, so we can plug it in to find that the limit is $\frac{4}{\sqrt{4(2)+1}+3}=\frac{4}{3+3}=\frac{2}{3}$.

