MATH 1 Homework 5

Assigned October 12th, due October 19th

1. Let $f(x)=\frac{1}{(x-1)^{4}}$. Answer the following questions, and justify your answers.
(a) How close to 1 does x have to be so that $\frac{1}{(x-1)^{4}}>10000$?
(b) How close to 1 does x have to be so that $\frac{1}{(x-1)^{4}}>160000$?
(c) Find $\lim _{x \rightarrow 1} f(x)$.
2. Find functions f and g such that $\lim _{x \rightarrow 1} g(x)=3$ but $\lim _{x \rightarrow 1} f(g(x)) \neq f(3)$. (Either draw the graphs of the functions, or give their equations).
3. Write down an equation for a function f such that f has horizontal asymptote $y=1$, vertical asymptote $x=3$, and $\lim _{x \rightarrow 5} f(x)=3$.
4. This exercise will give you some practice to explore the $\epsilon-\delta$ concepts of the limit. Each of the following functions is a polynomial, so the limit $\lim _{x \rightarrow a} f(x)=f(a)$. Answer each of the following questions, and justify you answers.

Figure 1. Graph of a function f
(a) In Figure 1 we have the graph of a function f when $0 \leq x \leq 0.7$. As we see, $\lim _{x \rightarrow 0.4} f(x)=2$. Give a value for δ so that when x is δ-close to 0.4 (i.e. $|x-0.4|<\delta$), then $|f(x)-2|<0.2$.

Figure 2. Graph of a function g
(b) In Figure 2, we have the graph of a function g when $0 \leq x \leq 0.7$. We see $\lim _{x \rightarrow 0.5} g(x)=1.5$. Give a value for δ so that when $|x-0.5|<\delta$, then $|g(x)-1.5|<0.2$. Give a value for δ so that when $|x-0.5|<\delta$, then $|g(x)-1.5|<0.1$.
5. Give three examples of different types of functions that are discontinuous at infinitely many points. Hint: we have talked about some such functions at the beginning of the term, while classifying functions.
6. Are the following functions continuous at the given points? Why or why not?
(a) $f(x)=\cos \left(\frac{x+3}{x^{2}-2}\right)$ at $x=5$.
(b) $g(x)=\tan \left(\frac{x-\frac{\pi}{2}}{x-\pi+1}\right)$ at $x=\pi$.
(c) $h(x)=\ln \left(x^{2}-3\right)$ at $x=2$.
(d) $k(x)=2^{\log _{3}(\sqrt{x})}$ at $x=17$.
7. Use the Squeeze Theorem to evaluate the following limits. Show your work.
(a) $\lim _{x \rightarrow 0} x^{2} \arctan \left(\frac{1}{x}\right)$.
(b) $\lim _{x \rightarrow 0} x e^{\sin \left(\frac{1}{x}\right)}$.
(c) $\lim _{x \rightarrow-3}(x+3) \cos \left(\frac{1}{x+3}\right)$.
8. Evaluate the following limits without graphing or calculating points.
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$.
(b) $\lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}-3}{x-2}$.

