MATH 1 Homework 5

Assigned October 12th, due October 19th

- 1. Let $f(x) = \frac{1}{(x-1)^4}$. Answer the following questions, and justify your answers.
 - (a) How close to 1 does x have to be so that $\frac{1}{(x-1)^4} > 10000$?
 - (b) How close to 1 does x have to be so that $\frac{1}{(x-1)^4} > 160000$?
 - (c) Find $\lim_{x \to 1} f(x)$.
- 2. Find functions f and g such that $\lim_{x \to 1} g(x) = 3$ but $\lim_{x \to 1} f(g(x)) \neq f(3)$. (Either draw the graphs of the functions, or give their equations).
- 3. Write down an equation for a function f such that f has horizontal asymptote y = 1, vertical asymptote x = 3, and $\lim_{x \to 5} f(x) = 3$.
- 4. This exercise will give you some practice to explore the $\epsilon \delta$ concepts of the limit. Each of the following functions is a polynomial, so the limit $\lim_{x \to a} f(x) = f(a)$. Answer each of the following questions, and justify you answers.

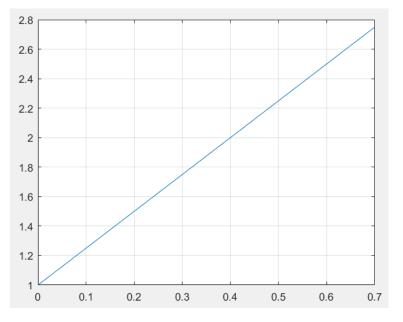


Figure 1. Graph of a function f

(a) In Figure 1 we have the graph of a function f when $0 \le x \le 0.7$. As we see, $\lim_{x \to 0.4} f(x) = 2$. Give a value for δ so that when x is δ -close to 0.4 (i.e. $|x-0.4| < \delta$), then |f(x)-2| < 0.2.

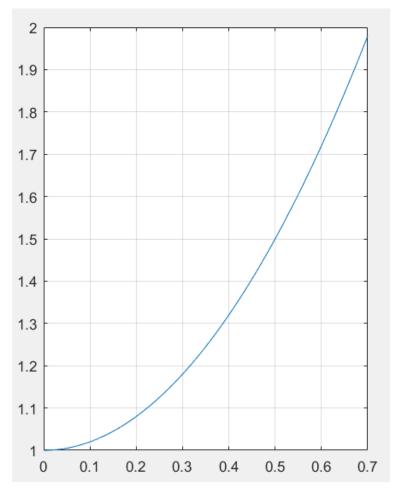


Figure 2. Graph of a function g

- (b) In Figure 2, we have the graph of a function g when $0 \le x \le 0.7$. We see $\lim_{x \to 0.5} g(x) = 1.5$. Give a value for δ so that when $|x - 0.5| < \delta$, then |g(x) - 1.5| < 0.2. Give a value for δ so that when $|x - 0.5| < \delta$, then |g(x) - 1.5| < 0.1.
- 5. Give three examples of different types of functions that are discontinuous at infinitely many points. Hint: we have talked about some such functions at the beginning of the term, while classifying functions.
- 6. Are the following functions continuous at the given points? Why or why not?

(a)
$$f(x) = \cos\left(\frac{x+3}{x^2-2}\right)$$
 at $x = 5$

(b)
$$g(x) = \tan\left(\frac{x - \frac{\pi}{2}}{x - \pi + 1}\right)$$
 at $x = \pi$

- (c) $g(x) = \tan\left(\frac{x}{x-\pi+1}\right)$ at x =(c) $h(x) = \ln(x^2 3)$ at x = 2.
- (d) $k(x) = 2^{\log_3(\sqrt{x})}$ at x = 17.

7. Use the Squeeze Theorem to evaluate the following limits. Show your work.

(a)
$$\lim_{x \to 0} x^2 \arctan\left(\frac{1}{x}\right)$$
.
(b) $\lim_{x \to 0} x e^{\sin\left(\frac{1}{x}\right)}$.
(c) $\lim_{x \to -3} (x+3) \cos\left(\frac{1}{x+3}\right)$.

8. Evaluate the following limits without graphing or calculating points.

(a)
$$\lim_{x \to 0} \frac{\sqrt{x+3} - \sqrt{3}}{x}$$

(b) $\lim_{x \to 2} \frac{\sqrt{4x+1} - 3}{x-2}$.