MATH 1 Homework 4

Assigned October 5th, due October 12th

1. Do the following sequences converge? If so, what to?
(a) $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$

Solution: Yes, to zero.
(b) $\{\cos (n \pi)\}_{n=1}^{\infty}$

Solution: No, the sequence is equivalent to $\left\{(-1)^{n}\right\}$.
(c) $\left\{n^{3}\right\}_{n=1}^{\infty}$

Solution: No, the sequence goes to infinity.
(d) $\left\{\frac{2 n-2}{n}\right\}_{n=1}^{\infty}$

Solution: Yes, the degrees of the top and bottom are the same, so we take the ratio of the leading coefficients. It converges to 2 .
(e) $\left\{\sin ^{2}(n)+\cos ^{2}(n)\right\}_{n=1}^{\infty}$

Solution: By the Pythagorean Identity, $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$ for any θ. Thus this is the constant sequence 1 , so it converges to 1 .
2. For the following scenarios, give an example or explain why it can't happen. Can a sequence converge if it is...
(a) monotone and bounded?

Solution: Yes, a sequence always converges if it is monotone and bounded. For example $\left\{\frac{1}{n}\right\}$.
(b) monotone and unbounded?

Solution: No, convergent sequences are always bounded. If it is monotone and unbounded, then the sequence must go to either positive or negative infinity.
(c) bounded but not monotone?

Solution: Yes, $\left\{\frac{(-1)^{n}}{n}\right\}$.
3. Let $\left\{a_{n}\right\}=\left\{0, x^{2}, 0, x^{4}, 0, x^{6}, \ldots\right\}$. If $x=\frac{1}{3}$, the sequence converges. If $x=2$, the sequence does not converge. Find all values of x for which the sequence converges. Explain why the sequence converges for the values of x that you found, and explain why it does not converge for other values of x.

Solution: The sequence converges for $(-1,1)$. If the sequence converges, it must converge to 0 since every other term is 0 . If we plug in a fraction, as the powers increase, the fraction will become smaller, so the sequence will converge to zero. If we plug in a positive number larger than 1 , the even terms in the sequence will increase to infinity, while the odd terms will stay at zero. If we plug in 1 or -1 , the sequence will bounce back and forth between 0 and 1 . If we plug in a negative number smaller than -1 , the even terms in the sequence will decrease to negative infinity, while the odd terms will stay at zero.
4. Let $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{3^{n}\right\}_{n=1}^{\infty}$.
(a) Find a sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ such that the product sequence $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}$ converges to 0 . Explain why your answer converges to 0 .
Solution: In this problem we will use the fact that $\left\{r^{n}\right\}_{n=1}^{\infty}$ converges to 0 if $-1<r<1$, it converges to 1 when $r=1$, and it doesn't converge for any other real value. Depending on the limit that we want, we will pick an appropriate r. Let $\left\{b_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{4^{n}}\right\}_{n=1}^{\infty}$. Then $a_{n} b_{n}=\frac{3^{n}}{4^{n}}=\left(\frac{3}{4}\right)^{n}$, so $\left\{a_{n} b_{n}\right\}_{n=1}^{\infty}=\left\{\left(\frac{3}{4}\right)^{n}\right\}_{n=1}^{\infty}$ converges to 0 as n goes to ∞ since $-1<\frac{3}{4}<1$. In fact, any sequence $\left\{\frac{1}{t^{n}}\right\}$ would work as long as $t>3$ or $t<-3$.
(b) Find a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ such that the quotient sequence $\left\{\frac{a_{n}}{c_{n}}\right\}_{n=1}^{\infty}$ converges to 1. Explain why your answer converges to 1 .
Solution: Let $\left\{c_{n}\right\}_{n=1}^{\infty}=\left\{3^{n}\right\}_{n=1}^{\infty}$. Then $\frac{a_{n}}{c_{n}}=\frac{3^{n}}{3^{n}}=1$, so $\left\{\frac{a_{n}}{c_{n}}\right\}_{n=1}^{\infty}=\{1\}_{n=1}^{\infty}$ converges to 1 since all its terms are 1 .
(c) Find a sequence $\left\{d_{n}\right\}_{n=1}^{\infty}$ such that the quotient sequence $\left\{\frac{a_{n}}{d_{n}}\right\}_{n=1}^{\infty}$ does not converge. Explain why it doesn't converge.
Solution: We can pick $\left\{d_{n}\right\}_{n=1}^{\infty}=\left\{2^{n}\right\}_{n=1}^{\infty}$. Then $\frac{a_{n}}{d_{n}}=\frac{3^{n}}{2^{n}}=\left(\frac{3}{2}\right)^{n}$, so $\left\{\frac{a_{n}}{d_{n}}\right\}_{n=1}^{\infty}=$ $\left\{\left(\frac{3}{2}\right)^{n}\right\}_{n=1}^{\infty}$ does not converge since $\frac{3}{2}>1$. In fact, any $\left\{d_{n}\right\}_{n=1}^{\infty}=\left\{s^{n}\right\}_{n=1}^{\infty}$ would work as long as $-3 \leq t<0$ or $0<t<3$.
5. Either plot the graphs of each of the following functions or approximate them numerically in order to guess the following limits. Show your work.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}+3 x-4}{x-1}$

Solution:

By examining the graph of the function above, we see that $\lim _{x \rightarrow 1}=5$. Another approach to get the graph of the function is the following: we can factor the numerator $x^{2}+3 x-4=$ $(x-1)(x+4)$, so $f(x)=\frac{(x-1)(x+4)}{x-1}$, and by cancelling we get that $f(x)=x+4$ when $x \neq 1$. Therefore, we just get the line $x+4$ wth a point at $x=1$ missing, and the limit is $1+4=5$.
(b) $\lim _{x \rightarrow 1}\left[\ln \left(-x^{2}+4 x-3\right)-\ln (x-1)\right]$

Solution: While we can just graph the function and guess the value, we can use a similar trick from part (a) and factor $-x^{2}+4 x-3=-(x-1)(x-3)$. Then

$$
\ln \left(-x^{2}+4 x-3\right)-\ln (x-1)=\ln \frac{-x^{2}+4 x-3}{x-1}=\ln \frac{-(x-1)(x-3)}{x-1}
$$

As we cancel out the factor $x-1$, we get that close to $x=1$, the graph looks like the graph of $\ln (-x+3)$, so $\lim _{x \rightarrow 1} \ln (-x+3)=\ln (-1+3)=\ln (2)$.
(c) $\lim _{x \rightarrow 0} \frac{\sin (x) \tan (x)}{x^{2}}$

Solution: Graphing the function we get

and we can see that as x gets closer to 0 , the value of the function gets closer to 1 , so

$$
\lim _{x \rightarrow 0} \frac{\sin (x) \tan (x)}{x^{2}}=1
$$

Alternatively, we can plug in values of x that get closer and closer to 0 , and see if we observe a trend. For example, $f(0.1) \approx 1.0016, f(-0.1) \approx 1.0016, f(0.01) \approx 1.00002$, $f(-0.01) \approx 1.00002$ etc. As we see, the values seem to get closer and closer to 1 as x gets closer and closer to 0 , so we guess the limit is 1 .
6. What are the asymptotes of the following functions? For parts (a) and (b), sketch the function.
(a) $\frac{x^{2}+1}{x^{2}}$

Solution: We get the horizontal asymptotes by looking at both limits as $x \rightarrow-\infty$ and $x \rightarrow+\infty$. Thus,

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}+1}{x^{2}}=\lim _{x \rightarrow+\infty}\left(\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)=\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x^{2}}\right)=1,
$$

since the term $\frac{1}{x^{2}}$ gets negligible as x grows very large.
Similarly,

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+1}{x^{2}}=\lim _{x \rightarrow-\infty}\left(\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}\right)=\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x^{2}}\right)=1,
$$

so the only horizontal asymptote is $y=1$.
To find vertical asymptotes, we check the limit near points where the function is not defined. The only such point is $x=0$, so we need to find $\lim _{x \rightarrow 0} \frac{x^{2}+1}{x^{2}}$. To find whether
the values of the function grow large in magnitude and if they do, whether they have positive or negative sign, we plug in some values of x close to 0 : at $x=0.1$, the value of the function is 101 ; at $x=-0.1$, the value is also 101 . At $x=0.01$ and $x=-0.01$, the value of the function is 10001 . As the values grow large in magnitude and are positive, it is safe to assume that $\lim _{x \rightarrow 0} \frac{x^{2}+1}{x^{2}}=+\infty$, and we have one vertical asyptote $x=0$.
Due to the two asymptotes we found above, we can sketch the function, which will look the following way:

(b) $\frac{5 x}{3 x+3}$

Solution: Horizontal asymptotes:

$$
\lim _{x \rightarrow+\infty} \frac{5 x}{3 x+3}=\lim _{x \rightarrow+\infty} \frac{\frac{5 x}{x}}{\frac{3 x+3}{x}}=\lim _{x \rightarrow+\infty} \frac{5}{3+\frac{3}{x}}=\frac{5}{3}
$$

since the term $\frac{3}{x}$ gets negligible (very close to 0) as x grows large. Similarly,

$$
\lim _{x \rightarrow-\infty} \frac{5 x}{3 x+3}=\lim _{x \rightarrow-\infty} \frac{\frac{5 x}{x}}{\frac{3 x+3}{x}}=\lim _{x \rightarrow-\infty} \frac{5}{3+\frac{3}{x}}=\frac{5}{3} .
$$

So the only horizontal asymptote is $y=\frac{5}{3}$.
Vertical asymptotes: we check the limit near points where the fnction is not defined. The only such point is $x=-1$, since then the denominator is $3 \cdot(-1)+3=0$, so we need to find $\lim _{x \rightarrow-1^{-}} \frac{5 x}{3 x+3}$ and $\lim _{x \rightarrow-1^{+}} \frac{5 x}{3 x+3}$. Plugging in $x=-1.001$, the value of the function is $1668.333 \ldots$, plugging in $x=-1.0001$, the value is $16668.333 \ldots$, so we may assume $\lim _{x \rightarrow-1^{-}} \frac{5 x}{3 x+3}=+\infty$. Now, plugging in $x=-0.999$, the value of the function is -1665 , plugging in $x=-0.9999$, the value is -16665 , so we may assume $\lim _{x \rightarrow-1^{+}} \frac{5 x}{3 x+3}=-\infty$. Thus we have one vertical asymptote: $x=-1$.
Due to the two asymptotes we found, we can sketch the function:

(c) $\ln \left(x^{2}+x-6\right)$

Solution: As $x \rightarrow \pm \infty$, the natural logarithm function grows large (since the range of $\ln (x)$ is $(-\infty,+\infty)$), so we have no horizontal asymptotes. For the vertical asymptotes, we want to first find where the function s defined. Since $x^{2}+x-6=(x-2)(x+3)$, $x^{2}+x-6>0$ when either both factors are positive, or both factors are negative.
Case 1: $x-2>0$ and $x+3>0$, so $x>2$ and $x>-3$, so $x>2$.
Case 2: $x-2<0$ and $x+3<0$, so $x<2$ and $x<-3$, so $x<-3$.
Therefore, the function is defined when on the interval $(-\infty,-3) \cup(2,+\infty)$.
We can only have asymptotes at the real endpoints of these intervals, so the vertical asymptotes are $x=2, x=-3$.

