MATH 1 Homework 3 Solutions

Assigned September 28th, due October 5th

1. (a) We start by raising 16 to both sides to get

$$
16^{\log _{4}(x)+\log _{16}(x)}=16^{3} .
$$

Using exponent rules, we can separate this exponent to get $16^{\log _{4}(x)} \times 16^{\log _{16}(x)}=16^{3}$. We can rewrite $16^{\log _{4}(x)}=\left(4^{2}\right)^{\log _{4}(x)}=4^{2 \log _{4}(x)}=4^{\log _{4}\left(x^{2}\right)}$ so that our equation now reads

$$
4^{\log _{4}\left(x^{2}\right)} \times 16^{\log _{16}(x)}=16^{3} .
$$

But this simplifies to $x^{2} \cdot x=16^{3}$, so $x^{3}=16^{3}$, so $x=16$.
(b) Note that we can rewrite 4 as 2^{2}, so we can rewrite the entire equation to be

$$
2^{\left(2^{x}\right)}=2^{\left(2 \cdot 4^{x}\right)} .
$$

Taking $\log _{2}$ of both sides gives us $2^{x}=2 \cdot 4^{x}$. Again we can take $\log _{2}$ of both sides to get $\log _{2}\left(2^{x}\right)=\log _{2}\left(2 \cdot 4^{x}\right)$. We can separate this out using our \log rules to get $x \log _{2}(2)=\log _{2}(2)+x \log _{2}(4)$. Since $\log _{2}(2)=1$ and $\log _{2}(4)=2$, this is the same as $x=1+2 x$, so $x=-1$.
(c) We follow the exact same procedure to get

$$
2^{\left(2^{x}\right)}=2^{\left(2 \cdot 2^{x}\right)}
$$

Taking $\log _{2}$ of both sides gives us $2^{x}=2 \cdot 2^{x}$. Again we can take $\log _{2}$ of both sides to get $\log _{2}\left(2^{x}\right)=\log _{2}\left(2 \cdot 2^{x}\right)$. We can separate this out using our \log rules to get $x \log _{2}(2)=\log _{2}(2)+x \log _{2}(2)$. Since $\log _{2}(2)=1$, this is the same as $x=1+x$. But this is impossible. Thus there is no solution.
(d) First, note that the equation is defined only if $x>0$, so any solutions we may get should be in the interval $(0,+\infty)$. If we raise 4 to both sides, we get

$$
4^{\log _{2}(x)}=4^{2 \log _{4}(x)}
$$

Note that we can rewrite 4 as 2^{2}, so this becomes

$$
2^{2 \log _{2}(x)}=4^{2 \log _{4}(x)}
$$

Using the exponent rule, this becomes $2^{\log _{2}\left(x^{2}\right)}=4^{\log _{4}\left(x^{2}\right)}$. But this cancels to become $x^{2}=x^{2}$. While this is true of all real numbers, we are only looking at solutions in the interval $(0,+\infty)$, so our solutions are all real numbers in the interval $(0,+\infty)$.
2. (a) First, note that the length of $A C$ is $\sqrt{51}$ by the Pythagorean Theorem. Then we can read the trig functions off of the triangle: $\sin (\theta)=\frac{\sqrt{51}}{10}, \cos (\theta)=\frac{7}{10}$, and $\tan (\theta)=\frac{\sqrt{51}}{7}$. Based on this, $\frac{\pi}{6}<\theta<\frac{\pi}{3}$ because $\cos (\theta)=.7$, which falls in between the values of $\cos (\pi / 6)$ and $\cos (\pi / 3)$ (and similarly for sin and \tan).
(b) If we put these points on the unit circle, $(\cos (\pi / 10), \sin (\pi / 10))$ would be just above the x axis in quadrant $1,(\cos (11 \pi / 10), \sin (11 \pi / 10))$ would be just under the x axis in quadrant 3 , and $(\cos (14 \pi / 10), \sin (14 \pi / 10))$ would be just to the left of the y axis in quadrant 3. Based on the picture, $\cos (14 \pi / 10)>-\frac{1}{2}$ because the if we draw a straight line up to the x axis, it hits the x axis at a point to the right of $-\frac{1}{2}$. Based on the picture, $\sin (14 \pi / 10)<-\frac{1}{2}$ because if we draw a straight line over to the y axis, we hit the y axis at a point below $-\frac{1}{2}$.
3. (a) The formula for the new period is $\frac{2 \pi}{\omega}$, where ω is the horizontal scaling factor. Thus, the period is $\frac{2 \pi}{\frac{1}{2}}=4 \pi$.
(b) The period for $\cos (3 x)$ is $\frac{2 \pi}{3}$, so we can get the whole graph for $\cos (3 x)$ by putting it together with either strips of length $\frac{2 \pi}{3}$, or multiples of these of lengths $\frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{6 \pi}{3}, \frac{8 \pi}{3}, \ldots$ (so the function will also repeat itself after these periods of time). On the other hand, the period for $\tan (2 x)$ is $\frac{\pi}{2}$, so we can get the whole graph for $\tan (2 x)$ by putting it together with either strips of length $\frac{\pi}{2}$, or multiples of these of lengths $\frac{\pi}{2}, \frac{2 \pi}{2}, \frac{3 \pi}{2}, \frac{4 \pi}{2}, \ldots$ Among the two lists we see that both functions will repeat themselves after $\frac{6 \pi}{3}=2 \pi=\frac{4 \pi}{2}$, so their sum will also repeat itself after 2π. Thus, a period for the sum is 2π. Alternatively, we can check this period works algebraically:

$$
\cos (3(x+2 \pi))+\tan (2(x+2 \pi))=\cos (3 x+6 \pi))+\tan (2 x+4 \pi))=\cos (3 x)+\tan (2 x)
$$

(c) We proceed as in the previous exercise: $\sin \left(\frac{1}{4} x\right)$ has period 8π, so it will repeat itself after $8 \pi, 16 \pi, 24 \pi, 32 \pi, 40 \pi, 48 \pi, \ldots$. On the other hand, $\cos \left(\frac{1}{5} x\right)$ has period 10π, so it will repeat itself after $10 \pi, 20 \pi, 30 \pi, 40 \pi, 50 \pi, \ldots$ Both functions repeat themselves after 40π, and so will their product, so a period for the product is 40π. Alternatively, we can check this period works algebraically:
$\sin \left(\frac{1}{4}(x+40 \pi)\right) \cos \left(\frac{1}{5}(x+40 \pi)\right)=\sin \left(\frac{1}{4} x+10 \pi\right) \cos \left(\frac{1}{5} x+8 \pi\right)=\sin \left(\frac{1}{4} x\right) \cos \left(\frac{1}{5} x\right)$.
4. (a) The range of \arcsin is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so we look at an angle θ in this range on the unit circle that has $\sin (\theta)=-\frac{\sqrt{3}}{2}$. This angle is $-\frac{\pi}{3}$.
(b) We check that $\cos \left(\frac{3 \pi}{2}\right)=0$, so $\arccos \left(\cos \left(\frac{3 \pi}{2}\right)\right)=\arccos (0)=\frac{\pi}{2}$. We cannot use the cancellation laws for inverse functions since we need our angle to be in the interval $[0, \pi]$.
(c) We have the following triangle:

The third side length is given by the Pythagorean Theorem : $\sqrt{2^{2}-1^{2}}=\sqrt{3}$. The angle we are interested in is θ, and $\cos (\theta)=\frac{\sqrt{3}}{2}$.
(d)

The third side length is given by the Pythagorean Theorem : $\sqrt{3^{2}-2^{2}}=\sqrt{5}$. The angle we are interested in is θ, and $\tan (\theta)=\frac{\sqrt{5}}{2}$.
5. Let $f(x)=e^{\sin (x)}$. To find an inverse, we first restrict to a one-to-one domain. Since the exponential function in base e is an increasing function, it is one-to-one when the exponent $\sin (x)$ is one-to-one. We choose the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then the range will be $\left[e^{\sin (-\pi / 2)}, e^{\sin (\pi / 2)}\right]$ which is $\left[\frac{1}{e}, e\right]$.
Next, we find the inverse:

$$
\begin{gathered}
y=e^{\sin (x)} \\
\ln (y)=\sin (x) \\
\arcsin (\ln (y))=x .
\end{gathered}
$$

Now we relabel, and get $f^{-1}(x)=\arcsin (\ln (x))$. Since for inverses the domains and range get flipped from the original function, the domain for f^{-1} is $\left[\frac{1}{e}, e\right]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

