MATH 1 Homework 2

Assigned September 21st, due September 28th

1. (a) You're riding a bike and want to see how fast you can go. After 2 seconds you've gone 1 meter, after 4 seconds you've gone 5 meters, and after 10 seconds you've gone 20 meters. Use Lagrange interpolation to find a polynomial that fits these data points, and then use that polynomial to predict how far you will have gone in 15 seconds. (Leave the polynomial unsimplified and use a calculator to evaluate).
Solution: My three points are $(2,1),(4,5)$, and $(10,20)$. Plugging these into my formula gives me

$$
f(x)=1 \frac{(x-4)(x-10)}{(2-4)(2-10)}+5 \frac{(x-2)(x-10)}{(4-2)(4-10)}+20 \frac{(x-2)(x-4)}{(10-2)(10-4)}
$$

When I plug 15 into this, I get $f(15)=35.94$.
(b) Use a graphing tool to find the plot of your polynomial that you got in part (a). Sketch the plot. Does this model make sense? Why or why not?

Solution:

This model does not make sense because after 0 seconds, I will have gone a negative distance.
2. Let f be a function with domain $[2,3]$ and range $[-1,2]$. Give the domain and range of the following functions:
(a) $f(3 x+2)+3$

Solution: For domain: To be able to plug $3 x+2$ into f, it needs to be in the domain, so $2 \leq 3 x+2 \leq 3$. Now we need to solve for x, so subtracting 2 gives $0 \leq 3 x \leq 1$, and dividing by 3 gives $0 \leq x \leq \frac{1}{3}$. Thus our final domain is [$\left.0,1 / 3\right]$.
For range: Just add 3: $[2,5]$.
(b) $4 f(-x+1)-1$

Solution: For domain: To be able to plug $-x+1$ into f, it needs to be in the domain, so $2 \leq-x+1 \leq 3$. Now we need to solve for x, so subtracting 1 gives $1 \leq-x \leq 2$, and dividing by -1 gives $-1 \geq x \geq-2$. Thus our final domain is $[-2,-1]$.
For range: We first multiply by 4 to get $[-4,8]$, and then subtract 1 , giving us $[-5,7]$.
(c) $-2 f(x+1)+1$

Solution: For domain: To be able to plug $x+1$ into f, it needs to be in the domain, so $2 \leq x+1 \leq 3$. Now we need to solve for x, so subtracting 1 gives $1 \leq x \leq 2$. Thus our final domain is [1, 2].
For range: We first multiply by -2 and switch the order of the bounds to get $[-4,2]$. Then we add 1 to get $[-3,3]$.
3. Below is the graph of a function f :

(a) Describe the transformations needed to draw the graph of $-f(x-5)+2$. What order do the transformations need to be performed in?
Solution: The -1 reflects over the x axis, the -5 moves the graph 5 units to the right, and the +2 moves the graph 2 units up. The reflection must happen before moving the graph 2 units up, and the -5 can happen at any time.
(b) Sketch the graph of $-f(x-5)+2$.

Solution:

(c) Why does the order matter? What would happen if you did the transformations in a different order?
Solution: If we swapped the order of reflection and moving up 2 units, the graph would start at $y=-2$ instead of $y=2$.
4. For the following functions, decompose into the given number of nonidentity functions.
(a) Write $\sqrt[3]{x^{2}+4 x+4}$ as the composition of two nonidentity functions.

Solution: We can set $f(x)=x^{2}+4 x+4, g(x)=\sqrt[3]{x}$, and $(g \circ f)(x)=\sqrt[3]{x^{2}+4 x+4}$.
(b) Write $\sqrt[3]{x^{2}+4 x+4}$ as the composition of three nonidentity functions.

Solution: We notice furthermore that as defined above, $f(x)=x^{2}+4 x+4=(x+$ $2)(x+2)=(x+2)^{2}$, so if we let $h(x)=(x+2), j(x)=x^{2}$, then $f=j \circ h$. Then with $g(x)=\sqrt[3]{x}$, we have

$$
(g \circ j \circ h)(x)=\sqrt[3]{(x+2)^{2}}
$$

(c) Write $\sqrt{x}+34 x^{2}$ as the composition of two nonidentity functions.

Solution: $\sqrt{x}+34 x^{2}=\sqrt{x}+34(\sqrt{x})^{4}$,
so let $g(x)=\sqrt{x}, h(x)=x+34 x^{4}$. Then $(h \circ g)(x)=\sqrt{x}+34(\sqrt{x})^{4}$.
(d) Write $-f(x-5)+2$ as the composition of three nonidentity functions.

Solution: Let $g(x)=x-5, h(x)=-x+2$. Then

$$
(h \circ f \circ g)(x)=h(f(g(x)))=h(f(x-5))=-f(x-5)+2 .
$$

5. (a) Sketch the graphs of the following functions

$$
f(x)=x^{2}+1, \quad g(x)=|x|, \quad h(x)=\sqrt{x^{2}-1} .
$$

Solution: From left to right we have f, g, h

(b) For each function you have sketched, choose a maximal part of the domain where the function is one-to-one (by maximal we mean that if we add another point, the function wouldn't be 1-1). Specify this part of the domain, then sketch the inverse function with respect to that domain.
Solution: f is not one-to-one on the whole real line, but it is one-to-one on $[0,+\infty)$. Its inverse is symmetric with respect to the $y=x$ line, and is depicted in green in the following figure

g is also not one-to-one on the whole real line, but it is one-to-one on $[0,+\infty)$. Its inverse is symmetric with respect to the $y=x$ line, and since the graph of g for $x \geq 0$ is in the line $y=x$, its reflection across the line is also on the line, so the inverse of g with respect to the domain $[0,+\infty)$ has the same graph as g itself from $[0,+\infty)$, and the graph of the inverse is depicted in green in the following figure:

h is not one-to-one on the whole real line either, but it is one-to-one on $[1,+\infty)$. Its inverse is symmetric with respect to the $y=x$ line, and is depicted in green in the following figure

(c) Find the equation of the inverse for each function.

Solution: The equations of the inverses are found the following way: For $f(x)$:

$$
\begin{aligned}
& y=x^{2}+1 \\
& y-1=x^{2} \\
& \sqrt{y-1}=x
\end{aligned}
$$

so $f^{-1}(y)=\sqrt{y-1}$ and after relabeling, $f^{-1}(x)=\sqrt{x-1}$.
For $g(x)=|x|$, we have that $g(x)=x$ is already the identity when $x \geq 0$, so the inverse is $g^{-1}(x)=x$.

For $h(x)$:

$$
\begin{gathered}
y=\sqrt{x^{2}-1} \\
y^{2}=x^{2}-1 \\
y^{2}+1=x^{2} \\
\sqrt{y^{2}+1}=x
\end{gathered}
$$

so $h^{-1}(y)=\sqrt{y^{2}+1}$ and after relabeling, $h^{-1}(x)=\sqrt{x^{2}+1}$.
6. Suppose you are offered a job that lasts one month. Which of the following methods of payment do you prefer? Explain your answer.

- Seven million dollars at the end of the month.
- One cent on the first day of the month, two cents on the second day, four cents on the third day, and, in general, 2^{n-1} cents on the nth day. (This month has 30 days).

Solution: The second choice: on the 29th day we get $2^{29-1}=2^{28}$ cents, which is 268435456 cents, a bit more than 2684354 dollars; on the 30 th day we get $2^{30-1}=2^{29}$ cents, which is 536870912 cents, and therefore a bit more than 5368709 dollars. In the last two days alone, we make $2684354+5368709>7000000$ dollars.

