Math 1 Lecture 9 Friday 09-30-16

Michael Musty
Dartmouth College

$$
09-30-16
$$

Reminders/Announcements

- Exams will be back in the HW boxes later today
- WebWork due Monday
- Written HW due Wednesday
- Quiz Monday

Reminders/Announcements

- Exams will be back in the HW boxes later today
- WebWork due Monday
- Written HW due Wednesday
- Quiz Monday
- We have a lot of stuff going on!

Suppose we have a circle with a diameter of length d.

Suppose we have a circle with a diameter of length d. The length of d will determine the length of the circumference c.

Suppose we have a circle with a diameter of length d. The length of d will determine the length of the circumference c. The ratio $\frac{c}{d}$ does not depend on the circle.

Suppose we have a circle with a diameter of length d.
The length of d will determine the length of the circumference c. The ratio $\frac{c}{d}$ does not depend on the circle. This constant ratio is known as π.

$$
\pi=\frac{\text { Circumference }}{\text { Diameter }}
$$

Angles

We have 2 ways to measure angles.

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.

Angles

We have 2 ways to measure angles.

Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.

Angles

We have 2 ways to measure angles.

Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.

Radians are the ratio of the length of circle arc to circle radius.

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.
Radians are the ratio of the length of circle arc to circle radius. If C is a circle of radius r, then a segment of length x measures out x / r radians.

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.
Radians are the ratio of the length of circle arc to circle radius. If C is a circle of radius r, then a segment of length x measures out x / r radians.

$$
\frac{2 \pi r}{r} \mathrm{rad}=360^{\circ}
$$

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.
Radians are the ratio of the length of circle arc to circle radius. If C is a circle of radius r, then a segment of length x measures out x / r radians.

$$
\frac{2 \pi r}{r} \mathrm{rad}=360^{\circ}
$$

That is,

$$
\pi \mathrm{rad}=180^{\circ}
$$

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.
Radians are the ratio of the length of circle arc to circle radius. If C is a circle of radius r, then a segment of length x measures out x / r radians.

$$
\frac{2 \pi r}{r} \mathrm{rad}=360^{\circ}
$$

That is,

$$
\pi \mathrm{rad}=180^{\circ}
$$

From now on we will almost always use radians to measure angles.

Angles

We have 2 ways to measure angles.
Degrees represent a proportion of a revolution.
1° is $1 / 360$ th of a revolution.
Radians are the ratio of the length of circle arc to circle radius. If C is a circle of radius r, then a segment of length x measures out x / r radians.

$$
\frac{2 \pi r}{r} \mathrm{rad}=360^{\circ}
$$

That is,

$$
\pi \mathrm{rad}=180^{\circ}
$$

From now on we will almost always use radians to measure angles. We will also just write π instead of π rad.

Convert 60° to radians.

Convert 60° to radians.
Solution:

$$
60^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{\pi}{3} \mathrm{rad}
$$

Convert 60° to radians.
Solution:

$$
60^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{\pi}{3} \mathrm{rad}
$$

OK now we will stop writing rad. . .

Convert 60° to radians.
Solution:

$$
60^{\circ} \cdot \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{\pi}{3} \mathrm{rad}
$$

OK now we will stop writing rad. . . promise!

Right Angles

Suppose we have a right triangle with interior angle θ.

Right Angles

Suppose we have a right triangle with interior angle θ. Then we know the other interior angle θ^{\prime} of the triangle. Why?

Right Angles

Suppose we have a right triangle with interior angle θ. Then we know the other interior angle θ^{\prime} of the triangle. Why?

$$
\theta^{\prime}=\frac{\pi}{2}-\theta
$$

Right Angles

Suppose we have a right triangle with interior angle θ. Then we know the other interior angle θ^{\prime} of the triangle. Why?

$$
\theta^{\prime}=\frac{\pi}{2}-\theta
$$

Remember, in Euclidean geometry, interior angles of triangles add up to π.

Right Angles

Suppose we have a right triangle with interior angle θ. Then we know the other interior angle θ^{\prime} of the triangle. Why?

$$
\theta^{\prime}=\frac{\pi}{2}-\theta
$$

Remember, in Euclidean geometry, interior angles of triangles add up to π. Remember also that a, b, c satisfy a certain equation...

$\sin \theta, \cos \theta, \tan \theta$ version I

In a right triangle with angle θ and side lengths a, b, c we can define the following ratios of side lengths.

$\sin \theta, \cos \theta, \tan \theta$ version I

In a right triangle with angle θ and side lengths a, b, c we can define the following ratios of side lengths.

$$
\begin{array}{rlr}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & =\frac{b}{c} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & =\frac{a}{c} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} & =\frac{b}{a}
\end{array}
$$

$\sin \theta, \cos \theta, \tan \theta$ version I

In a right triangle with angle θ and side lengths a, b, c we can define the following ratios of side lengths.

$$
\begin{array}{rlr}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & =\frac{b}{c} \\
\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & =\frac{a}{c} \\
\tan \theta=\frac{\text { opposite }}{\text { adjacent }} & =\frac{b}{a}
\end{array}
$$

I mean, nobody can stop us from just making a definition!

$\sin \theta, \cos \theta, \tan \theta$ version II

We can also define these functions using points on the unit circle.

$\sin \theta, \cos \theta, \tan \theta$ version II

We can also define these functions using points on the unit circle.

version I or version II?

So which version is better?

version I or version II?

So which version is better?
You guessed it, they agree. . .

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense.

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?
Oh yeah, notice that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?
Oh yeah, notice that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

We also have 3 more trigonometric functions. . .

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?
Oh yeah, notice that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

We also have 3 more trigonometric functions. . .

$$
\sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?
Oh yeah, notice that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

We also have 3 more trigonometric functions. . .

$$
\sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

In summary, we have defined 6 functions $\sin \theta, \cos \theta, \tan \theta, \sec \theta, \csc \theta, \cot \theta$.

version I or version II?

So which version is better?
You guessed it, they agree. . . at least when they both make sense. Since version II makes sense for negative values of θ, we tend to take this as the definition of $\sin \theta$ and $\cos \theta$.
Wait, what happened to $\tan \theta$?
Oh yeah, notice that

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

We also have 3 more trigonometric functions. . .

$$
\sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

In summary, we have defined 6 functions
$\sin \theta, \cos \theta, \tan \theta, \sec \theta, \csc \theta, \cot \theta$. We will mostly be concerned with the first 3 , but good to know them all!

$\cos \pi / 4$ and $\sin \pi / 4$

$\cos \pi / 4$ and $\sin \pi / 4$

$(\cos \pi / 4, \sin \pi / 4)=(\sqrt{2} / 2, \sqrt{2} / 2)$.

$\cos \pi / 3$ and $\sin \pi / 3$

$\cos \pi / 3$ and $\sin \pi / 3$

$(\cos \pi / 3, \sin \pi / 3)=(1 / 2, \sqrt{3} / 2)$.

Positive Multiples of $\frac{\pi}{2}$

Positive Multiples of $\frac{\pi}{2}$

$(\cos 7 \pi / 2, \sin 7 \pi / 2)=$

Positive Multiples of $\frac{\pi}{2}$

$(\cos 7 \pi / 2, \sin 7 \pi / 2)=(0,-1)$

Positive Multiples of $\frac{\pi}{4}$

Positive Multiples of $\frac{\pi}{4}$

$(\cos 7 \pi / 4, \sin 7 \pi / 4)=$

Positive Multiples of $\frac{\pi}{4}$

$(\cos 7 \pi / 4, \sin 7 \pi / 4)=(\sqrt{2} / 2,-\sqrt{2} / 2)$

Positive Multiples of $\frac{\pi}{3}$

Positive Multiples of $\frac{\pi}{3}$

$(\cos 14 \pi / 3, \sin 14 \pi / 3)=$

Positive Multiples of $\frac{\pi}{3}$

$(\cos 14 \pi / 3, \sin 14 \pi / 3)=(-1 / 2, \sqrt{3} / 2)$

Positive Multiples of $\frac{\pi}{6}$

Positive Multiples of $\frac{\pi}{6}$

$(\cos 19 \pi / 6, \sin 19 \pi / 6)=$

Positive Multiples of $\frac{\pi}{6}$

$(\cos 19 \pi / 6, \sin 19 \pi / 6)=(-\sqrt{3} / 2,-1 / 2)$

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function?

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function? Yup, it's even!

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function? Yup, it's even! Similarly, we see that

$$
\sin (\theta)=-\sin (-\theta) \quad \text { for all } \theta
$$

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function? Yup, it's even! Similarly, we see that

$$
\sin (\theta)=-\sin (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\sin \theta$ is what type of function?

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function? Yup, it's even! Similarly, we see that

$$
\sin (\theta)=-\sin (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\sin \theta$ is what type of function? Odd.

Some Useful Properties

Using the symmetry of the unit circle, we can conclude lots of nice properties about these functions.
For instance, Pythagoras tells us that

$$
(\cos \theta)^{2}+(\sin \theta)^{2}=1 \quad \text { for all } \theta
$$

From staring at the unit circle we see that

$$
\cos (\theta)=\cos (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\cos \theta$ is what type of function? Yup, it's even! Similarly, we see that

$$
\sin (\theta)=-\sin (-\theta) \quad \text { for all } \theta
$$

This tells us that $f(\theta)=\sin \theta$ is what type of function? Odd. For a brief summary of this information dump see our website: https://math.dartmouth.edu/~m1f16/MATH1Docs/
TrigonometryReview.pdf

We worked hard. Now what do we get?

We worked hard. Now what do we get?
The upshot is that now we have more functions in our repertoire!

We worked hard. Now what do we get?
The upshot is that now we have more functions in our repertoire! Spelling?

We worked hard. Now what do we get?
The upshot is that now we have more functions in our repertoire! Spelling?
Now we can study the 6 trigonometric functions as functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

We worked hard. Now what do we get?
The upshot is that now we have more functions in our repertoire! Spelling?
Now we can study the 6 trigonometric functions as functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
We will commonly write these functions in the variable x instead of θ.

$f(x)=\sin x$ and $f(x)=\cos x$

$f(x)=\sin x$ and $f(x)=\cos x$

Domain?

$f(x)=\sin x$ and $f(x)=\cos x$

Domain? $(-\infty, \infty)$.

$f(x)=\sin x$ and $f(x)=\cos x$

Domain? $(-\infty, \infty)$. Range?

$f(x)=\sin x$ and $f(x)=\cos x$

Domain? $(-\infty, \infty)$. Range? $[-1,1]$.

$f(x)=\tan x$

$f(x)=\tan x$

Domain?

$f(x)=\tan x$

Domain? Exclude the odd multiples of $\pi / 2$.

$f(x)=\tan x$

Domain? Exclude the odd multiples of $\pi / 2$. Why?

$f(x)=\tan x$

Domain? Exclude the odd multiples of $\pi / 2$. Why? Because that is where $\cos x=0$.

$f(x)=\tan x$

Domain? Exclude the odd multiples of $\pi / 2$. Why? Because that is where $\cos x=0$. Range?

$f(x)=\tan x$

Domain? Exclude the odd multiples of $\pi / 2$. Why? Because that is where $\cos x=0$. Range? $(-\infty, \infty)$.

Period and Amplitude

An interesting property of the functions $\sin x$ and $\cos x$ is that they resemble waves.

Period and Amplitude

An interesting property of the functions $\sin x$ and $\cos x$ is that they resemble waves.
The height of the wave is called the amplitude.

Period and Amplitude

An interesting property of the functions $\sin x$ and $\cos x$ is that they resemble waves.
The height of the wave is called the amplitude.
The period is the smallest real number $P>0$ such that $f(x+P)=f(x)$ for every x in the domain of f.

Period and Amplitude

An interesting property of the functions $\sin x$ and $\cos x$ is that they resemble waves.
The height of the wave is called the amplitude.
The period is the smallest real number $P>0$ such that $f(x+P)=f(x)$ for every x in the domain of f.
Uh, don't write something like that without showing an example!

$$
\begin{aligned}
& f(x)=2 \sin x \\
& f(x)=\sin x \\
& f(x)=\frac{1}{2} \sin x
\end{aligned}
$$

Amplitude 2
Amplitude 1
Amplitude $\frac{1}{2}$

$$
\begin{array}{ll}
f(x)=2 \cos x & \text { Amplitude } 2 \\
f(x)=\cos x & \text { Amplitude } 1 \\
f(x)=\frac{1}{2} \cos x & \text { Amplitude } \frac{1}{2}
\end{array}
$$

$$
\begin{array}{ll}
f(x)=\sin (2 x) & \text { Period } \pi \\
f(x)=\sin x & \text { Period } 2 \pi \\
f(x)=\sin \left(\frac{x}{2}\right) & \text { Period } 4 \pi
\end{array}
$$

$$
\begin{array}{ll}
f(x)=\cos (2 x) & \text { Period } \pi \\
f(x)=\cos x & \text { Period } 2 \pi \\
f(x)=\cos \left(\frac{x}{2}\right) & \text { Period } 4 \pi
\end{array}
$$

Period of $f(x)=\tan x$

The function $f(x)=\tan x$ does not have an amplitude, but it does have a period. What is it?

Period of $f(x)=\tan x$

The function $f(x)=\tan x$ does not have an amplitude, but it does have a period. What is it? Remember the picture...

Period of $f(x)=\tan x$

The function $f(x)=\tan x$ does not have an amplitude, but it does have a period. What is it? Remember the picture. .. the period is π.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.
The amplitude is a.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.
The amplitude is a.
The period is $2 \pi / \omega$.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.
The amplitude is a.
The period is $2 \pi / \omega$. Horizontal shift by t / ω.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.
The amplitude is a.
The period is $2 \pi / \omega$.
Horizontal shift by t / ω.
Vertical shift by d.

$f(x)=a \sin (\omega x+t)+d$

Let a, t, d in \mathbb{R} and $\omega>0$. We would like to describe the function

$$
f(x)=a \sin (\omega x+t)+d=a \sin \left(\omega\left(x+\frac{t}{\omega}\right)\right)+d
$$

relative to the function $\sin x$.
The amplitude is a.
The period is $2 \pi / \omega$.
Horizontal shift by t / ω.
Vertical shift by d.
Similar for $f(x)=a \cos (\omega x+t)+d$.

Please find the period and amplitude of the function $f(x)=3 \sin (7 x)$.

Please find the period and amplitude of the function $f(x)=3 \sin (7 x)$.
Solution:
The amplitude is 3 and the period is $2 \pi / 7$.

Please find the period and amplitude of the function $f(x)=3 \sin (7 x-1)$.

Please find the period and amplitude of the function $f(x)=3 \sin (7 x-1)$.
Solution:
The amplitude is 3 and the period is $2 \pi / 7$.

Please find the period of the function $f(x)=3 \tan (7 x)$.

Please find the period of the function $f(x)=3 \tan (7 x)$. Solution:
The period is $\pi / 7$.

Please find the period of the function $f(x)=3 \tan (7 x-1)$.

Please find the period of the function $f(x)=3 \tan (7 x-1)$. Solution: The period is $\pi / 7$.

Please find the period of the function $f(x)=3 \tan (7 x-1)$. Solution:
The period is $\pi / 7$.
What about the horizontal shift?

Please find the period of the function $f(x)=3 \tan (7 x-1)$. Solution:
The period is $\pi / 7$.
What about the horizontal shift? Right by $1 / 7$.

Are any of these functions one-to-one?

Are any of these functions one-to-one?

Well. . . certainly not on their entire domain!

Are any of these functions one-to-one?

Well. . . certainly not on their entire domain! However, as we've seen before, we can consider functions on smaller domains where they are one-to-one and therefore have well-defined inverse functions.

$f(x)=\arcsin (x)$

To make $\sin x$ one-to-one we restrict to the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then define the arcsine function by the following.

$$
\arcsin x=y \Longleftrightarrow \sin y=x
$$

- The domain of $\arcsin x$ is $[-1,1]$.
- The range of $\arcsin x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- For all x in $[-1,1]$ we have that

$$
\sin (\arcsin x)=x
$$

- For all x in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ we have that

$$
\arcsin (\sin x)=x
$$

$f(x)=\arcsin x$

$f(x)=\arccos (x)$

To make $\cos x$ one-to-one we restrict to the domain $[0, \pi]$. Then define the arccosine function by the following.

$$
\arccos x=y \Longleftrightarrow \cos y=x
$$

- The domain of $\arccos x$ is $[-1,1]$.
- The range of $\arccos x$ is $[0, \pi]$.
- For all x in $[-1,1]$ we have that

$$
\cos (\arccos x)=x
$$

- For all x in $[0, \pi]$ we have that

$$
\arccos (\cos x)=x
$$

$f(x)=\arccos x$

$f(x)=\arctan (x)$

To make $\tan x$ one-to-one we restrict to the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then define the arctangent function by the following.

$$
\arctan x=y \Longleftrightarrow \tan y=x
$$

- The domain of $\arctan x$ is \mathbb{R}.
- The range of $\arctan x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- For all x in \mathbb{R} we have that

$$
\tan (\arctan x)=x
$$

- For all x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ we have that

$$
\arctan (\tan x)=x
$$

$f(x)=\arctan x$

Please find $\arcsin (\sqrt{2} / 2)$.

Please find $\arcsin (\sqrt{2} / 2)$.
Solution:
We want to find an angle θ with $\sin (\theta)=\sqrt{2} / 2$ and $-\pi / 2 \leq \theta \leq \pi / 2$. Why?

Please find $\arcsin (\sqrt{2} / 2)$.
Solution:
We want to find an angle θ with $\sin (\theta)=\sqrt{2} / 2$ and
$-\pi / 2 \leq \theta \leq \pi / 2$. Why? Because that is the range of $\arcsin (x)$.

Please find $\arcsin (\sqrt{2} / 2)$.
Solution:
We want to find an angle θ with $\sin (\theta)=\sqrt{2} / 2$ and
$-\pi / 2 \leq \theta \leq \pi / 2$. Why? Because that is the range of $\arcsin (x)$.
OK fine, $\theta=\pi / 4$.

Please find $\arctan (\sqrt{3})$.

Please find $\arctan (\sqrt{3})$.
Solution:
We want to find an angle θ with $\tan (\theta)=\sqrt{3}$ and $-\pi / 2 \leq \theta \leq \pi / 2 \ldots$

Please find $\arctan (\sqrt{3})$.
Solution:
We want to find an angle θ with $\tan (\theta)=\sqrt{3}$ and $-\pi / 2 \leq \theta \leq \pi / 2 \ldots \theta=\pi / 3$.

Please find $\arcsin (\sin (3 \pi / 4))$.

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right?

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No!

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No!

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No! No! No! No! No! No!

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No! No! No! No! No! No! Why?

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No! No! No! No! No! No! Why? Because $3 \pi / 4$ is not in the range of $\arcsin (x)$!

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No! No! No! No! No! No! Why? Because $3 \pi / 4$ is not in the range of $\arcsin (x)$! With this in mind we see that

$$
\arcsin (\sin (3 \pi / 4))=\arcsin (\sqrt{2} / 2)=\pi / 4
$$

Please find $\arcsin (\sin (3 \pi / 4))$.

Solution:

These functions are inverses of each other, so the answer is obviously $3 \pi / 4$ right? No! No! No! No! No! No! No! Why? Because $3 \pi / 4$ is not in the range of $\arcsin (x)$! With this in mind we see that

$$
\arcsin (\sin (3 \pi / 4))=\arcsin (\sqrt{2} / 2)=\pi / 4
$$

UGH!

Practice Using the Trigonometry Review Sheet!

Practice Using the Trigonometry Review Sheet! https://math.dartmouth.edu/~m1f16/MATH1Docs/

 TrigonometryReview.pdf
Practice Using the Trigonometry Review Sheet! https://math.dartmouth.edu/~m1f16/MATH1Docs/
 TrigonometryReview.pdf
 It is nicely organized IMHO.

Please find $\sin (\arctan (\sqrt{3}))$.

Please find $\sin (\arctan (\sqrt{3}))$.
Solution:

$$
\sin (\arctan (\sqrt{3}))=\sin (\pi / 3)=\sqrt{3} / 2
$$

Please find $\tan (\arcsin (12 / 13))$.

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly.

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly. However, if we let $\theta=\arcsin (12 / 13)$ we can draw a helpful picture.

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly. However, if we let $\theta=\arcsin (12 / 13)$ we can draw a helpful picture.

What is a ?

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly. However, if we let $\theta=\arcsin (12 / 13)$ we can draw a helpful picture.

What is a ? Using Pythagoras we see that $a=5$.

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly. However, if we let $\theta=\arcsin (12 / 13)$ we can draw a helpful picture.

What is a ? Using Pythagoras we see that $a=5$. Now we just have to find $\tan \theta$ for this particular (unknown) θ.

Please find $\tan (\arcsin (12 / 13))$.
Solution: This is a bit more difficult since we can't find θ directly. However, if we let $\theta=\arcsin (12 / 13)$ we can draw a helpful picture.

What is a ? Using Pythagoras we see that $a=5$. Now we just have to find $\tan \theta$ for this particular (unknown) θ. We see that $\tan \theta=12 / 5$.

Please find a formula for $\cos (\arctan (x))$.

Please find a formula for cos $(\arctan (x))$. Solution: Again, we can't find θ directly.

Please find a formula for cos $(\arctan (x))$.
Solution: Again, we can't find θ directly. However, if we let $\theta=\arctan (x)$ we can draw a helpful picture.

Please find a formula for cos $(\arctan (x))$.
Solution: Again, we can't find θ directly. However, if we let $\theta=\arctan (x)$ we can draw a helpful picture.

What is c ?

Please find a formula for cos $(\arctan (x))$.
Solution: Again, we can't find θ directly. However, if we let $\theta=\arctan (x)$ we can draw a helpful picture.

What is c ? Using Pythagoras we see that $c=\sqrt{x^{2}+1}$.

Please find a formula for cos $(\arctan (x))$.
Solution: Again, we can't find θ directly. However, if we let $\theta=\arctan (x)$ we can draw a helpful picture.

What is c ? Using Pythagoras we see that $c=\sqrt{x^{2}+1}$. Now we just have to find $\cos \theta$ for this particular (unknown) θ.

Please find a formula for cos $(\arctan (x))$.
Solution: Again, we can't find θ directly. However, if we let $\theta=\arctan (x)$ we can draw a helpful picture.

What is c ? Using Pythagoras we see that $c=\sqrt{x^{2}+1}$. Now we just have to find $\cos \theta$ for this particular (unknown) θ. We see that $\cos \theta=1 / \sqrt{x^{2}+1}$.

Have a great weekend! If you get bored, think about finding all solutions to $\sin x=0$ or $\tan x=1 \ldots$

