Math 1 Exam 1 Exercises Thursday 09-29-16

Michael Musty
Dartmouth College

09-29-16

Solve the equation

$$
25^{\left(5^{x}\right)}=125^{\left(25^{x}\right)} .
$$

Solve the equation

$$
25^{\left(5^{x}\right)}=125^{\left(25^{x}\right)} .
$$

Solution:

$$
\begin{aligned}
25^{\left(5^{x}\right)}=125^{\left(25^{x}\right)} & \Longrightarrow \log _{5}\left(25^{\left(5^{x}\right)}\right)=\log _{5}\left(125^{\left(25^{x}\right)}\right) \\
& \Longrightarrow 5^{x} \log _{5}(25)=25^{x} \log _{5}(125) \\
& \Longrightarrow 5^{x} \cdot 2=25^{x} \cdot 3 \\
& \Longrightarrow \log _{5}\left(5^{x} \cdot 2\right)=\log _{5}\left(25^{x} \cdot 3\right) \\
& \Longrightarrow \log _{5}(2)+\log _{5}\left(5^{x}\right)=\log _{5}(3)+\log _{5}\left(25^{x}\right) \\
& \Longrightarrow \log _{5}(2)+x=\log _{5}(3)+x \log _{5}(25) \\
& \Longrightarrow \log _{5}(2)+x=\log _{5}(3)+2 x \\
& \Longrightarrow x=\log _{5}(2)-\log _{5}(3) .
\end{aligned}
$$

Solve the equation

$$
\log _{2}(x-2)+\log _{2}(x+5)=3
$$

Solve the equation

$$
\log _{2}(x-2)+\log _{2}(x+5)=3
$$

Solution:

$$
\begin{aligned}
\log _{2}(x-2)+\log _{2}(x+5)=3 & \Longrightarrow \log _{2}((x-2)(x+5))=3 \\
& \Longrightarrow \log _{2}\left(x^{2}+3 x-10\right)=3 \\
& \Longrightarrow 2^{\log _{2}\left(x^{2}+3 x-10\right)}=2^{3} \\
& \Longrightarrow x^{2}+3 x-10=8 \\
& \Longrightarrow x^{2}+3 x-18=0 \\
& \Longrightarrow(x+6)(x-3)=0 .
\end{aligned}
$$

So this yields two possibilities for x. But notice that only one of these choices lands in the domain of $\log _{2}$!

Solve the equation

$$
\log _{x^{2}}(4)=1
$$

Solve the equation

$$
\log _{x^{2}}(4)=1
$$

Solution:

$$
\begin{aligned}
\log _{x^{2}}(4)=1 & \Longrightarrow\left(x^{2}\right)^{\log _{x^{2}}(4)}=\left(x^{2}\right)^{1} \\
& \Longrightarrow 4=x^{2} \\
& \Longrightarrow x= \pm 2
\end{aligned}
$$

Consider the constant function $f(x)=1$.

Consider the constant function $f(x)=1$. Is f a linear function?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!
Is f a rational function?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!
Is f a rational function? Yes!

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!
Is f a rational function? Yes!
What about $f(x)=$ quadratic?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!
Is f a rational function? Yes!
What about $f(x)=$ quadratic?
What about $f(x)=1 / x$?

Consider the constant function $f(x)=1$.
Is f a linear function? Yes!
Is f a power function? Yes!
Is f a polynomial? Yes!
Is f a rational function? Yes!
What about $f(x)=$ quadratic?
What about $f(x)=1 / x$?
What about $f(x)=\sqrt[3]{x}$?

Use Lagrange interpolation to find a line through the points $(2,5)$ and (3,6).

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

What is $f(0)$?

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

What is $f(0)$? Yup $f(0)=3$.

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

What is $f(0)$? Yup $f(0)=3$.
Suppose we want the function $f(x)$ to model how far a biker has traveled after biking for x seconds.

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

What is $f(0)$? Yup $f(0)=3$.
Suppose we want the function $f(x)$ to model how far a biker has traveled after biking for x seconds. Would $f(x)=x+3$ make sense as a model for such a situation?

Use Lagrange interpolation to find a line through the points $(2,5)$ and $(3,6)$.

Solution:

$$
\begin{aligned}
f(x) & =5 \frac{x-3}{2-3}+6 \frac{x-2}{3-2} \\
& =-5(x-3)+6(x-2) \\
& =x+3
\end{aligned}
$$

What is $f(0)$? Yup $f(0)=3$.
Suppose we want the function $f(x)$ to model how far a biker has traveled after biking for x seconds. Would $f(x)=x+3$ make sense as a model for such a situation? Nope!

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.
Start with the domain. Notice there is only one transformation affecting the domain.

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.
Start with the domain. Notice there is only one transformation affecting the domain.

$$
-3 \leq x+2 \leq 2 \Longrightarrow-3-2 \leq x \leq 2-2 \Longrightarrow-5 \leq x \leq 0
$$

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.
Start with the domain. Notice there is only one transformation affecting the domain.

$$
-3 \leq x+2 \leq 2 \Longrightarrow-3-2 \leq x \leq 2-2 \Longrightarrow-5 \leq x \leq 0
$$

Now there are 2 transformations affecting the range.

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.
Start with the domain. Notice there is only one transformation affecting the domain.

$$
-3 \leq x+2 \leq 2 \Longrightarrow-3-2 \leq x \leq 2-2 \Longrightarrow-5 \leq x \leq 0
$$

Now there are 2 transformations affecting the range. Note the range of $f^{-1}(x+2)$ on $[-5,0]$ is the same as the range of $f^{-1}(x)$ on $[-3,2]$.

Suppose f is injective on the domain $[-5,10]$ with range $[-3,2]$. Find the domain and range of $3 f^{-1}(x+2)-11$.

Solution:

First realize that $f^{-1}:[-3,2] \rightarrow[-5,10]$.
Start with the domain. Notice there is only one transformation affecting the domain.

$$
-3 \leq x+2 \leq 2 \Longrightarrow-3-2 \leq x \leq 2-2 \Longrightarrow-5 \leq x \leq 0
$$

Now there are 2 transformations affecting the range. Note the range of $f^{-1}(x+2)$ on $[-5,0]$ is the same as the range of $f^{-1}(x)$ on $[-3,2]$.

$$
\begin{aligned}
-5 \leq f^{-1}(x+2) \leq 10 & \Longrightarrow-15 \leq 3 f^{-1}(x+2) \leq 30 \\
& \Longrightarrow-15-11 \leq 3 f^{-1}(x+2)-11 \leq 30-11 \\
& \Longrightarrow-26 \leq 3 f^{-1}(x+2)-11 \leq 19 .
\end{aligned}
$$

Find the average rate of change of $f(x)=x^{4}-x^{2}$ on the interval $[-2,2]$.

Find the average rate of change of $f(x)=x^{4}-x^{2}$ on the interval $[-2,2]$. Solution:

$$
\frac{f(2)-f(-2)}{2-(-2)}=0
$$

Find the average rate of change of $f(x)=x^{4}-x^{2}$ on the interval $[-2,2]$. Solution:

$$
\frac{f(2)-f(-2)}{2-(-2)}=0
$$

$f(x)=f(-x)$ for all x. Thus f has the property...

Find the average rate of change of $f(x)=x^{4}-x^{2}$ on the interval $[-2,2]$. Solution:

$$
\frac{f(2)-f(-2)}{2-(-2)}=0
$$

$f(x)=f(-x)$ for all x. Thus f has the property...that it is even!

Suppose $f(x)=\sqrt{x+5}$ and $g(x)=x^{4}+2$. Let $h(x)=(g \circ f)(x)$. Find the domain and range of h.

Suppose $f(x)=\sqrt{x+5}$ and $g(x)=x^{4}+2$. Let $h(x)=(g \circ f)(x)$. Find the domain and range of h.

Solution:

$h(x)=(\sqrt{x+5})^{4}+2$. Although the simplified equation defines a function with domain \mathbb{R}, the domain of h cannot be larger than the domain of f (since we "plug into" f first). Thus the domain of h is $[-5, \infty)$.

Suppose $f(x)=\sqrt{x+5}$ and $g(x)=x^{4}+2$. Let $h(x)=(g \circ f)(x)$. Find the domain and range of h.

Solution:

$h(x)=(\sqrt{x+5})^{4}+2$. Although the simplified equation defines a function with domain \mathbb{R}, the domain of h cannot be larger than the domain of f (since we "plug into" f first). Thus the domain of h is $[-5, \infty)$. Now note that h is an increasing function on $[-5, \infty)$. Thus the range of h is $[2, \infty)$.

