MATH 1 LECTURE 8 WEDNESDAY 09-28-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements	1
II. Exam Preparation]
II.1. Sequences]
II.2. Even/Odd Functions]
II.3. Average Rate of Change on an Interval]
II.4. Domain and Range of a Function	2
II.5. Inverse Functions	4
II.6. Lagrange Interpolation	4
II.7. Classes of Functions	4
II.8. \exp/\log	4
III. Trig	J.

I. Reminders/Announcements

start 10:10am Doutlatt	Remarks
Bartlett 105	 Written HW#2 due WebWork HW06extra due MIDTERM1 is Thursday and covers material through exp/logNO TRIG. We have shifted things slightly

10:15am

II. EXAM PREPARATION

II.1. Sequences.

- bounded, increasing, decreasing
- II.2. Even/Odd Functions.
- II.3. Average Rate of Change on an Interval.

II.4. Domain and Range of a Function.

• Compositions

Examples

Let $f(x) = \sqrt{x-6}$, g(x) = 1, $h(x) = 5x^2$. Find the domain and range of $h \circ f$. Solution. $(h \circ f)(x) = 5(\sqrt{x-6})^2$. Since $5(\sqrt{x-6})^2$ simplifies to 5(x-6) we are tempted to say the domain and range are \mathbb{R} . However, the domain of $h \circ f$ cannot be larger than the domain of f which is $[6, \infty)$. Thus, the domain of $h \circ f$ is $[6, \infty)$. The range of $h \circ f$ is $[(h \circ f)(6), \infty) = [0, \infty)$ since $h \circ f$ is an increasing function.

• Inverses

Examples

Suppose f has domain [-2, 5] and range [-7, 2]. Suppose also that f is injective on this domain. Then f^{-1} is well-defined. What are the domain and range of f^{-1} .

Solution. The domain of f^{-1} is the range of f, that is, [-7, 2]. The range of f^{-1} is the domain of f, that is, [-2, 5].

Examples

Let $f(x) = (x+5)^2 - 2$.

(a) Find the largest domain where f is injective.

Solution. One choice is $[-5, \infty)$. Once we restrict the domain of f we are viewing f as a function $f: [-5\infty) \to [-2, \infty)$.

(b) Find the inverse of f on $[-5, \infty)$. Compute the domain and range of f^{-1} .

Solution. $f^{-1}(x) = \sqrt{x+2} - 5$. We can now verify that the domain of f^{-1} is $[-2, \infty)$ and the range of f^{-1} is $[-5, \infty)$ as we would suspect. f^{-1} : $[-2, \infty) \to [-5, \infty)$.

• Behavior under tranformations

Examples

Let's take the example from Quiz2. Let f have domain [-1, 2] and range [-2, 3]. Consider $g(x) = (-1) \cdot f(x-3)$. Find the domain and range of g.

Solution. First note that to see how the domain behaves we just need x - 3 to land in the domain of f. Thus we are required to solve the inequality

$$-1 \le x - 3 \le 2 \implies 2 \le x \le 5.$$

That is, the domain of g is [2, 5]. Now note that on the domain [2, 5], the function f(x-3) has the same range as f on the domain [-1, 2], so we just need to consider what happens with the reflection. Again, we solve an inequality

$$-2 \le f(x-3) \le 3 \implies 2 \ge (-1) \cdot f(x-3) \ge -3.$$

That is, the range of g is [-3, 2]. Alternatively, we could just figure this out geometrically as well. An example of a function f satisfying the domain and range conditions is the line through the points (-1, -2) and (2, 3). That is, f(x) = (5/3)x - (1/3). Here's a picture to make it clear what is going on.

Examples

Let's do a more complicated example. Let f have domain [-4, 5] and range [-2, 4]. Find the domain and range of g(x) = (-1/2)f(3x - 1).

Solution. As in the previous problem, we solve the inequality

$$-4 \le 3x - 1 \le 5 \implies -3 \le 3x \le 6$$
$$\implies -1 \le x \le 2.$$

That is, the domain of g is [-1, 2]. For the range we note that on [-1, 2], f(3x - 1) has the same range as f on [-4, 5]. Thus

$$-2 \le f(3x-1) \le 4 \implies \left(-\frac{1}{2}\right)(-2) \ge \left(-\frac{1}{2}\right)f(3x-1) \ge \left(-\frac{1}{2}\right)4$$
$$\implies 1 \ge (-1/2)f(3x-1) \ge -2.$$

That is, the range of g is [-2, 1]. Alternatively, we could just use the picture again. The line through (-4, -2) and (5, 4) is given by the function f(x) = (2/3)x + (2/3). Here's the picture.

II.5. Inverse Functions.

- one-to-one on an interval
- II.6. Lagrange Interpolation.
- II.7. Classes of Functions.
 - linear, power, poly, rational

II.8. \exp/\log .

- definitions
- properties

• solve equations

Examples

Solve $25^{(5^x)} = 125^{(25^x)}$ for x. Solve $\log_2(x-2) + \log_2(x+5) = 3$ for x. Solve $\log_{x^2}(4) = 1$ for x.

11:00am

III. Trig

With any time that remains start Trig!

end 11:15am