MATH 1 LECTURE 8 WEDNESDAY 09-28-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements 1
II. Exam Preparation 1
II.1. Sequences 1
II.2. Even/Odd Functions 1
II.3. Average Rate of Change on an Interval 1
II.4. Domain and Range of a Function 2
II.5. Inverse Functions 4
II.6. Lagrange Interpolation 4
II.7. Classes of Functions 4
II.8. \exp / \log 4
III. Trig 5

I. Reminders/Announcements

10:10am	Remarks
$\begin{aligned} & \text { Bartlett } \\ & 105 \end{aligned}$	- Written HW\#2 due - WebWork HW06extra due - MIDTERM1 is Thursday and covers material through $\exp / l o g .$. NO TRIG. We have shifted things slightly...

10:15am

II. Exam Preparation

II.1. Sequences.

- bounded, increasing, decreasing
II.2. Even/Odd Functions.
II.3. Average Rate of Change on an Interval.

II.4. Domain and Range of a Function.

- Compositions

Examples

Let $f(x)=\sqrt{x-6}, g(x)=1, h(x)=5 x^{2}$. Find the domain and range of $h \circ f$. Solution. $(h \circ f)(x)=5(\sqrt{x-6})^{2}$. Since $5(\sqrt{x-6})^{2}$ simplifies to $5(x-6)$ we are tempted to say the domain and range are \mathbb{R}. However, the domain of $h \circ f$ cannot be larger than the domain of f which is $[6, \infty)$. Thus, the domain of $h \circ f$ is $[6, \infty)$. The range of $h \circ f$ is $[(h \circ f)(6), \infty)=[0, \infty)$ since $h \circ f$ is an increasing function.

- Inverses

Examples

Suppose f has domain $[-2,5]$ and range $[-7,2]$. Suppose also that f is injective on this domain. Then f^{-1} is well-defined. What are the domain and range of f^{-1}.
Solution. The domain of f^{-1} is the range of f, that is, $[-7,2]$. The range of f^{-1} is the domain of f, that is, $[-2,5]$.

Examples

Let $f(x)=(x+5)^{2}-2$.
(a) Find the largest domain where f is injective.

Solution. One choice is $[-5, \infty)$. Once we restrict the domain of f we are viewing f as a function $f:[-5 \infty) \rightarrow[-2, \infty)$.
(b) Find the inverse of f on $[-5, \infty)$. Compute the domain and range of f^{-1}.

Solution. $f^{-1}(x)=\sqrt{x+2}-5$. We can now verify that the domain of f^{-1} is $[-2, \infty)$ and the range of f^{-1} is $[-5, \infty)$ as we would suspect. f^{-1} : $[-2, \infty) \rightarrow[-5, \infty)$.

- Behavior under tranformations

Examples

Let's take the example from Quiz2. Let f have domain $[-1,2]$ and range $[-2,3]$. Consider $g(x)=(-1) \cdot f(x-3)$. Find the domain and range of g.

Solution. First note that to see how the domain behaves we just need $x-3$ to land in the domain of f. Thus we are required to solve the inequality

$$
-1 \leq x-3 \leq 2 \Longrightarrow 2 \leq x \leq 5
$$

That is, the domain of g is $[2,5]$. Now note that on the domain $[2,5]$, the function $f(x-3)$ has the same range as f on the domain $[-1,2$], so we just need to consider what happens with the reflection. Again, we solve an inequality

$$
-2 \leq f(x-3) \leq 3 \Longrightarrow 2 \geq(-1) \cdot f(x-3) \geq-3
$$

That is, the range of g is $[-3,2]$. Alternatively, we could just figure this out geometrically as well. An example of a function f satisfying the domain and range conditions is the line through the points $(-1,-2)$ and $(2,3)$. That is, $f(x)=(5 / 3) x-(1 / 3)$. Here's a picture to make it clear what is going on.

Examples

Let's do a more complicated example. Let f have domain $[-4,5]$ and range $[-2,4]$. Find the domain and range of $g(x)=(-1 / 2) f(3 x-1)$.

Solution. As in the previous problem, we solve the inequality

$$
\begin{aligned}
-4 \leq 3 x-1 \leq 5 & \Longrightarrow-3 \leq 3 x \leq 6 \\
& \Longrightarrow-1 \leq x \leq 2 .
\end{aligned}
$$

That is, the domain of g is $[-1,2]$. For the range we note that on $[-1,2]$, $f(3 x-1)$ has the same range as f on $[-4,5]$. Thus

$$
\begin{aligned}
-2 \leq f(3 x-1) \leq 4 & \Longrightarrow\left(-\frac{1}{2}\right)(-2) \geq\left(-\frac{1}{2}\right) f(3 x-1) \geq\left(-\frac{1}{2}\right) 4 \\
& \Longrightarrow 1 \geq(-1 / 2) f(3 x-1) \geq-2
\end{aligned}
$$

That is, the range of g is $[-2,1]$. Alternatively, we could just use the picture again. The line through $(-4,-2)$ and $(5,4)$ is given by the function $f(x)=$ $(2 / 3) x+(2 / 3)$. Here's the picture.

II.5. Inverse Functions.

- one-to-one on an interval

II.6. Lagrange Interpolation.

II.7. Classes of Functions.

- linear, power, poly, rational
II.8. exp/log.
- definitions
- properties
- solve equations

Examples

Solve $25^{\left(5^{x}\right)}=125^{\left(25^{x}\right)}$ for x.
Solve $\log _{2}(x-2)+\log _{2}(x+5)=3$ for x.
Solve $\log _{x^{2}}(4)=1$ for x.
III. Trig

With any time that remains start Trig!
end
11:15am

