MATH 1 LECTURE 7 MONDAY 09-26-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements 1
II. Quiz2 1
III. More Exponential/Logarithmic Functions 2
IV. Solving Exponential/Logarithmic Equations 2
V. Worksheet from Friday 3
VI. Exam Preparation 3

I. Reminders/Announcements

start
10:10am
Bartlett
105

Remarks

- Written HW\#1 in Kemeny 1st floor
- Written HW\#2 due Wednesday
- WebWork HW06 due today
- WebWork HW06extra due Wednesday
- See m1f15 for old exams
- MIDTERM1 is Thursday and covers material through exp/log...NO TRIG. We have shifted things slightly...
- We have Quiz2 today

II. Quiz2

Remarks

Quizzes should be done by 10:25am.

Definition

Let $a>0$ be fixed. We define the exponential function $f(x)=a^{x}$.
MM: [What is the domain and range of this function?]
MM: [Why do we insist that $a>0$?]
Now define the logarithmic function $f(x)=\log _{a}(x)$ by the rule:

$$
y=a^{x} \Longleftrightarrow \log _{a}(y)=x
$$

MM: [What is the domain and range of this function?]
MM: [How is $\log _{a}(x)$ related to a^{x}]

Examples

MM: [draw some example graphs]
MM: [There is really just one base $a=e=2.7182818284590 \ldots$]

Examples

Let $x, y \in \mathbb{R}$ and $a>0$. Then

- $a^{x+y}=a_{a^{x}}^{x} a^{y}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
- $\log _{a}\left(x^{y}\right)=y \log _{a}(x)$

Remarks

We are justified in picking a distinguished logarithmic function because every other one can be written as a constant multiple...

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

IV. Solving Exponential/Logarithmic Equations

10:35am

Examples

Solve $e^{5 x+4}=7$ for x.
Solution. $x=\frac{\log _{e}(7)-4}{5}$.

Examples

Solve $\left(e^{3 x}\right)^{2}=5 e^{2 x}$ for x.
Solution. $x=\frac{\log _{e}(5)}{4}$.

Examples

Solve $\log _{3}\left(x^{2}\right)=4$ for x.
Solution. $x= \pm 9$.

10:40am

V. Worksheet from Friday

MM: [We didn't get to this last time...]

10:55am

VI. Exam Preparation

Remarks

- WebWork + Written HW due Wed
- m1f15 old exams + review problems posted today
- Topics include:
- Sequences: bounded, increasing, decreasing
- even/odd functions
- average rate of change on an interval
- compositions: Let $f(x)=\sqrt{x-3}$ and $g(x)=x^{2}$. Find the domain of $g \circ f$.
- one-to-one on an interval
- domain and range: of a function, of an inverse, how they behave under function transformations
* first question on quiz 2
* Let f be injective with domain $[-2,5]$ and range $[-1,6]$. Find the domain and range of $(-2) f(2 x+1)+3$ and $(-1 / 3) f^{-1}(3 x-1)-2$.
- Lagrange interpolation of 2 points
- classes of functions: linear, power, poly, rational, etc
- exp/log
- solve equations with \exp / \log

