MATH 1 LECTURE 6 FRIDAY 09-23-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements	1
II. One-to-One Functions	1
III. Inverse Functions	2
IV. Exponential/Logarithmic Functions	4
V. Solving Exponential/Logarithmic Equations	5

I. Reminders/Announcements

start	1. 102.00.000.000.000.000.000
10:10am	Remarks
Bartlett 105	 Written HW#1 in Kemeny 1st floor Written HW#2 due Wednesday WebWork HW05 due today WebWork HW06 due Monday Quiz Monday See m1f15 for old exams MIDTERM1 is NEXT Thursday and covers material through Monday (Trig) HAND OUT WORKSHEET FOR THE DAY

10:15am

II. ONE-TO-ONE FUNCTIONS

Definition

A function $f: D \to \mathbb{R}$ is <u>one-to-one</u> (injective) if $a \neq b \implies f(a) \neq f(b)$ for all $a, b \in D$. MM: [in words "f attains values in its range at most once"] MM: [also "horizontal line test"...that's a thing]

Examples

MM: [odd roots]

- MM: [find domain(s) where quadratic is injective]
- MM: [some nice pictures]
- MM: [maybe prove something is injective...]

Remarks

• injectivity depends on the domain

10:25am

III. INVERSE FUNCTIONS

DefinitionLet $f: D \to \mathbb{R}$ be a function with range R. The inverse function of f is the fuction $f^{-1}: R \to D$ defined by $f^{-1}(y) = x \iff f(x) = y$ for any $y \in \mathbb{R}$. It satisfies the properties: $(f \circ f^{-1})(y) = y$ $(f^{-1} \circ f)(x) = x$ for all $x \in D$ and all $y \in R$.

Examples

$$F = \frac{9}{5} \cdot C + 32$$
$$C = \frac{5}{9} \cdot (F - 32)$$

Remarks

- Geometrically the graph of $f^{-1}(x)$ is the reflection of the graph of f(x) along the line y = x.
- To find the inverse $f^{-1}(x)$ algebraically we solve the equation y = f(x) for x and then switch $x \leftrightarrow y$.

Remarks

IV. EXPONENTIAL/LOGARITHMIC FUNCTIONS

10:40am

Let a > 0 be fixed. We define the exponential function $f(x) = a^x$. MM: [What is the domain and range of this function?] MM: [Why do we insist that a > 0?] Now define the logarithmic function $f(x) = \log_a(x)$ by the rule: $y = a^x \iff \log_a(y) = x$. MM: [What is the domain and range of this function?] MM: [How is $\log_a(x)$ related to a^x]

Examples

Definition

MM: [draw some example graphs] MM: [There is really just one base a = e = 2.7182818284590...]

Examples

Let
$$x, y \in \mathbb{R}$$
 and $a > 0$. Then
• $a^{x+y} = a^x a^y$
• $a^{x-y} = \frac{a^x}{a^y}$
• $(a^x)^y = a^{xy}$
• $\log_a(xy) = \log_a(x) + \log_a(y)$
• $\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$

•
$$\log_a(x^y) = y \log_a(x)$$

Remarks

We are justified in picking a distinguished logarithmic function because every other one can be written as a constant multiple...

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

V. Solving Exponential/Logarithmic Equations

end 11:15am