MATH 1 LECTURE 6 FRIDAY 09-23-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements 1
II. One-to-One Functions 1
III. Inverse Functions 2
IV. Exponential/Logarithmic Functions 4
V. Solving Exponential/Logarithmic Equations 5

I. Reminders/Announcements

start
10:10am
Bartlett 105

Remarks

- Written HW\#1 in Kemeny 1st floor
- Written HW\#2 due Wednesday
- WebWork HW05 due today
- WebWork HW06 due Monday
- Quiz Monday
- See m1f15 for old exams
- MIDTERM1 is NEXT Thursday and covers material through Monday (Trig)
- HAND OUT WORKSHEET FOR THE DAY

II. One-to-One Functions

Definition

A function $f: D \rightarrow \mathbb{R}$ is one-to-one (injective) if

$$
a \neq b \Longrightarrow f(a) \neq f(b)
$$

for all $a, b \in D$.
MM: [in words " f attains values in its range at most once"]
MM: [also "horizontal line test". . . that's a thing]

Examples

MM: [odd roots]
MM: [find domain(s) where quadratic is injective]
MM: [some nice pictures]
MM: [maybe prove something is injective. ..]

Remarks

- injectivity depends on the domain

Definition

Let $f: D \rightarrow \mathbb{R}$ be a function with range R. The inverse function of f is the fuction $f^{-1}: R \rightarrow D$ defined by

$$
f^{-1}(y)=x \Longleftrightarrow f(x)=y
$$

for any $y \in \mathbb{R}$. It satisfies the properties:

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(y)=y \\
& \left(f^{-1} \circ f\right)(x)=x
\end{aligned}
$$

for all $x \in D$ and all $y \in R$.

Examples

$$
\begin{aligned}
& F=\frac{9}{5} \cdot C+32 \\
& C=\frac{5}{9} \cdot(F-32)
\end{aligned}
$$

Examples

Remarks

- Geometrically the graph of $f^{-1}(x)$ is the reflection of the graph of $f(x)$ along the line $y=x$.
- To find the inverse $f^{-1}(x)$ algebraically we solve the equation $y=f(x)$ for x and then switch $x \leftrightarrow y$.

Remarks

IV. Exponential/Logarithmic Functions

10:40am

Definition

Let $a>0$ be fixed. We define the exponential function $f(x)=a^{x}$.
MM: [What is the domain and range of this function?]
MM: [Why do we insist that $a>0$?]
Now define the logarithmic function $f(x)=\log _{a}(x)$ by the rule:

$$
y=a^{x} \Longleftrightarrow \log _{a}(y)=x
$$

MM: [What is the domain and range of this function?]
MM: [How is $\log _{a}(x)$ related to a^{x}]

Examples

MM: [draw some example graphs]
MM: [There is really just one base $a=e=2.7182818284590 \ldots$]

Examples

Let $x, y \in \mathbb{R}$ and $a>0$. Then

- $a^{x+y}=a_{x}^{x} a^{y}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
- $\log _{a}\left(x^{y}\right)=y \log _{a}(x)$

Remarks

We are justified in picking a distinguished logarithmic function because every other one can be written as a constant multiple...

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)}
$$

Examples

Solve $e^{5 x+4}=7$ for x.
Solution. $x=\frac{\log _{e}(7)-4}{5}$.

Examples

Solve $\left(e^{3 x}\right)^{2}=5 e^{2 x}$ for x.
Solution. $x=\frac{\log _{e}(5)}{4}$.

Examples

Solve $\log _{3}\left(x^{2}\right)=4$ for x.
Solution. $x= \pm 9$.
MM: [if any time remains finish worksheet and/or start trig]

