MATH 1 LECTURE 2 WEDNESDAY 09-14-16

MICHAEL MUSTY

Contents

I. Reminders/Announcements	1
II. Combining Functions	1
III. Sequences	3
IV. Graphs of Functions	3
V. Even/Odd Functions	6
VI. Increasing/Decreasing Functions and Sequences	8
VII. Exercises	8

I. Reminders/Announcements

start 10:10am Bartlett 105	NOTE
	 Wednesday WebWork due Friday. Thursday Problem Session during x-hour. Written HW#1 assigned.

10:12am

II. COMBINING FUNCTIONS

WRITE
Example:
$\overline{\text{Let } f: \mathbb{R}} \to \mathbb{R}$ be defined by $f(x) = 2x + 3$.
Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = x^2 - 5$.
Then we can define new functions $f + g$, $f - g$, $f \cdot g$, f/g , $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$:
• $f + g : \mathbb{R} \to \mathbb{R}$ is the function defined by
$(f+g)(x) = 2x + 3 + x^2 - 5$
$= x^2 + 2x - 2.$

• $f - g : \mathbb{R} \to \mathbb{R}$ is the function defined by $(f-g)(x) = 2x + 3 - (x^2 - 5)$ $= -x^2 + 2x + 8$. • $f \cdot g : \mathbb{R} \to \mathbb{R}$ is the function defined by $(f \cdot q)(x) = (2x+3) \cdot (x^2 - 5)$ $= (2x)(x^{2}) + (2x)(-5) + (3)(x^{2}) + (3)(-5)$ $=2x^{3}-10x+3x^{2}-15$ $= 2x^3 + 3x^2 - 10x - 15.$ • $f/g: \mathbb{R} \to \mathbb{R}$ is the function defined by $(f/g)(x) = \frac{2x+3}{x^2-5}.$ Note that the domain of f/g does not include $\pm \sqrt{5} \in \mathbb{R}$. • $f \circ g : \mathbb{R} \to \mathbb{R}$ is the function defined by $(f \circ g)(x) = 2(\underbrace{x^2 - 5}_{g(x)}) + 3$ $=2x^2 - 10 + 3$ $=2x^2-7$ • $g \circ f : \mathbb{R} \to \mathbb{R}$ is the function defined by $(g \circ f)(x) = (\underbrace{2x+3}_{f(x)})^2 - 5$ $=4x^{2}+6x+6x+9-5$ $=4x^{2}+12x+4$. • $f \circ f : \mathbb{R} \to \mathbb{R}$ is the function defined by $(f \circ f)(x) = 2(2x+3) + 3$ =4x+6+3=4x+9.• $g \circ g : \mathbb{R} \to \mathbb{R}$ is the function defined by $(q \circ q)(x) = (x^2 - 5)^2 - 5$ $=x^4 - 5x^2 - 5x^2 + 25 - 5$ $= x^4 - 10x^2 + 20.$

10:20am

III. SEQUENCES

WRITE

 $\underline{\text{Def.}}$:

A sequence of real numbers is a subset of \mathbb{R} indexed by the natural numbers. We write $\{a_n\}_{n=1}^{\infty}$ to denote the sequence a_1, a_2, a_3, \ldots

WRITE

Example: The sequence $\{2n+5\}_{n=1}^{\infty}$ can more descriptively be written as

$$2 \cdot 1 + 5, 2 \cdot 2 + 5, 2 \cdot 3 + 5, \cdots$$

NOTE

WRITE

- https://oeis.org/
- Functions can give us sequences by just plucking out some values. For example let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x. Then $\{f(n)\}_{n=1}^{\infty}$ defines the sequence of positive even integers:

 $2, 4, 6, 8, \ldots$

10:30am

IV. GRAPHS OF FUNCTIONS

<u>Def.</u>: The graph of a function $f : \mathbb{R} \to \mathbb{R}$ is the set of ordered pairs (x, f(x)). We say x is the independent variable and y = f(x) is the dependent variable.

V. EVEN/ODD FUNCTIONS

10:45am

NOTE

- definition
- examples

WRITE

<u>Def.</u>: A function $f : \mathbb{R} \to \mathbb{R}$ is <u>even</u> if f(x) = f(-x) for all $x \in \mathbb{R}$. <u>Def.</u>: A function $f : \mathbb{R} \to \mathbb{R}$ is <u>odd</u> if f(x) = -f(-x) for all $x \in \mathbb{R}$.

10:55am

VI. INCREASING/DECREASING FUNCTIONS AND SEQUENCES

• increasing/decreasing

- weakly increasing/weakly decreasing
- monotonic
- examples

WRITE

<u>Def.</u>: A sequence $\{a_n\}_{n=1}^{\infty}$ is <u>increasing</u> if $a_n > a_{n-1}$ for all n > 1. It is <u>decreasing</u> if $a_n < a_{n-1}$ for all n > 1. <u>Def.</u>: A sequence $\{a_n\}_{n=1}^{\infty}$ is <u>weakly increasing</u> if $a_n \ge a_{n-1}$ for all n > 1. It is <u>weakly decreasing</u> if $a_n \le a_{n-1}$ for all n > 1. It is <u>Def.</u>: A sequence $\{a_n\}_{n=1}^{\infty}$ is <u>monotonic</u> if it is either weakly decreasing or weakly increasing.

NOTE

Functions can be increasing/decreasing/weakly increasing/weakly decreasing/monotonic on intervals of \mathbb{R} .

VII. EXERCISES

WRITE

(1) Please find the domain of the function

$$f(x) = \sqrt{3x+1}$$

- (2) Is the function $f(x) = x^2 + 1$ even? Explain.
- (3) Is the function $f(x) = \frac{1}{3x+1}$ odd? Explain.
- (4) Please find the domain of the function

$$f(x) = \sqrt{\frac{x^2}{x^2 - 2x}}$$

end 11:15am