\qquad

SEction:

Math 1 Practice Midterm 1

October 09, 2009

Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may not use a calculator.
- Show all of your work.

Honor Statement:

I have neither given nor received help on this exam, and all of the answers are my own.

Question	Points	Score
1	18	
2	8	
3	9	
4	18	
5	7	
6	10	
7	7	
8	8	
9	6	
10	9	
Total:	100	

1. Consider the function $f(x)=x-x^{2}$.
(a) [2 points] Compute the value $f(3)$.
(b) [2 points] Compute the value $f(4)$.
(c) [4 points] In terms of $x^{\prime} s$ and $h^{\prime} s$, what are $f(x)$ and $f(x+h)$?
(d) [6 points] Find the slope of the line passing through the points $(x, f(x))$ and $(x+h, f(x+h))$ on the graph of f. (You may assume $h \neq 0$.)
(e) [4 points] Find the equation of the line passing through the points $(3, f(3))$ and $(4, f(4))$ on the graph of f.
2. Consider the function $g(x)=\frac{x^{3}+x^{2}}{x^{2}}$.
(a) [4 points] What are the domain and range of $g(x)$?
(b) [4 points] Simplify $\frac{g(1+h)-g(1)}{h}$ (there is an easy way and a hard way to do this). (You may assume that $h \neq 0$ and $(1+h) \neq 0$.)
3. Consider the function $g(x)=\frac{1}{x-1}$. (Hint: Think about the graph of $h(x)=\frac{1}{x}$)
(a) [2 points] What is the domain and range of $g(x)$?
(b) [4 points] Find the inverse function, $g^{-1}(x)$ of $g(x)$. Find the domain and range of $g^{-1}(x)$.
(c) [3 points] Consider the function $f(x)=2 x+1$. Simplify $(f \circ g)(x)$.
4. Simplify the following expressions.
(a) $[4$ points $] \frac{4}{x}+\frac{x}{x+1}($ assume that $x \neq-1)$
(b) [3 points] $\left(\frac{x^{2} y}{y^{2} x}\right)^{-2}$
(c) [3 points] $\log _{4}\left(16^{3}\right)$
(d) [4 points] Write the following expression as one (natural) logarithm: $\ln (x+y)+\ln (x-y)-2 \ln (z)$
(e) [4 points] $\log _{3}(18)+\log _{3}(6)-\log _{3}(4)$
5. In each of the following equations solve for x.
(a) $[3$ points $] e^{10 x+1}=3$
(b) [4 points] $\ln \left((x-1)^{2}\right)=2$
6. We will now examine in detail the function $g(x)=-(x-2)^{3}+3$.
(a) [2 points] Sketch the basic function $y=x^{3}$.
(b) [2 points] Sketch the graph of $y=(x-2)^{3}$.
(c) [2 points] Sketch the graph of $y=-(x-2)^{3}$.
(d) [2 points] Sketch the graph of $y=-(x-2)^{3}+3$.
(e) [2 points] What is the domain of $g(x)=-(x-2)^{3}+3$? What is the range?
7. Consider the following function

$$
g(x)= \begin{cases}-x & \text { if } x<0 \\ x & \text { if } x \geq 0\end{cases}
$$

(a) [2 points] Sketch a graph of $g(x)$.
(b) [2 points] In words, what does the function $g(x)$ do?
(c) [3 points] Is the function $g(x)$ one-to-one? Explain why or why not (if you use a test, explain how/why it works - otherwise, referring to the definition is always safe).
8. (a) [2 points] Find a function of the form $f(x)=C a^{x}$ that goes through points $(0,5)$ and $(2,20)$. In other words find the constants C and a that would have the function d go through these points.
(b) [4 points] Find the inverse of the function $f(x)$.
(c) [2 points] Assuming your inverse function in part (b) is correct, what do you expect $\left(f^{-1} \circ f\right)(x)$ will be? (Hint: If you can't remember, try computing it and see what you get.)
9. Are the following functions even, odd or neither? Please justify your answer with a graph or an equation.
(a) [2 points] $f(x)=x^{3}+x$
(b) [2 points] $f(x)=x^{2}$
(c) [2 points] $f(x)=x^{3}+1$
10. (a) [3 points] Sketch a graph of $f(x)=\sin (x)$. What is the domain of $f(x)$? What is the range?
(b) [3 points] Sketch a graph of $g(x)=\sin (2 x)$. What is the domain of $g(x)$? What is the range?
(c) [3 points] Sketch a graph of $h(x)=\frac{1}{2} \sin (x)$. What is the domain of $h(x)$? What is the range?

