MATH 1 WEEKLY ASSIGNMENT #3 DUE OCTOBER 6

Problem #1

- I) Find the inverse of $f(x) = \sqrt{x-3} + 2$.
- II) Find the domain and range of both f and the inverse you found in part I.
- III) What transformations should we use to plot f starting from the graph of \sqrt{x} .

Problem #2

- I) Is $f(x) = (\ln(x))^2$ a one-to-one function? If so, find its inverse. Otherwise, find two different real numbers a and b such that f(a) = f(b).
- II) Is $f(x) = (x)^3 5$ a one-to-one function? If so, find its inverse. Otherwise, find two different real numbers a and b such that f(a) = f(b).

Problem #3

- I) Find the largest domain on which $f(x) = (x-3)^2 4$ is one-to-one.
- II) Find the largest domain containing x = 0 on which $f(x) = \sin(x)$ is one-to-one.
- III) Find the largest domain containing x = 0 on which $f(x) = |\sin(x)|$ is one-to-one.

Problem #4

- I) Solve $\ln(2x+1) = 2 \ln(x)$ for x.
- II) Solve $e^{2x-4} = 12$ for x.
- III) Solve $x^2 + \log_5(625)x + 256^{\frac{-1}{8}} = 0$ for x. Don't use a calculator.

Problem #5

Sketch a graph of $\frac{1}{2}\sin(3x+5) + 2$. Hint: Write out the necessary transformations in order and then apply them one at a time to the original graph.

Problem #6

- I) Solve $\cos(\sin(x)) = 1$ for x.
- II) Given that $\theta = \tan^{-1}(\frac{4}{3})$ find $\sin(\theta)$, $\cos(\theta)$, $\sec(\theta)$, and $\csc(\theta)$.

Date: September 30, 2015.