MATH 1 WEEKLY ASSIGNMENT \#3 DUE OCTOBER 6

Problem \#1

I) Find the inverse of $f(x)=\sqrt{x-3}+2$.
II) Find the domain and range of both f and the inverse you found in part I.
III) What transformations should we use to plot f starting from the graph of \sqrt{x}.

Problem \#2

I) Is $f(x)=(\ln (x))^{2}$ a one-to-one function? If so, find its inverse. Otherwise, find two different real numbers a and b such that $f(a)=f(b)$.
II) Is $f(x)=(x)^{3}-5$ a one-to-one function? If so, find its inverse. Otherwise, find two different real numbers a and b such that $f(a)=f(b)$.

Problem \#3

I) Find the largest domain on which $f(x)=(x-3)^{2}-4$ is one-to-one.
II) Find the largest domain containing $x=0$ on which $f(x)=\sin (x)$ is one-to-one.
III) Find the largest domain containing $x=0$ on which $f(x)=|\sin (x)|$ is one-to-one.

Problem \#4

I) Solve $\ln (2 x+1)=2-\ln (x)$ for x.
II) Solve $e^{2 x-4}=12$ for x.
III) Solve $x^{2}+\log _{5}(625) x+256^{\frac{-1}{8}}=0$ for x. Don't use a calculator.

Problem \#5

Sketch a graph of $\frac{1}{2} \sin (3 x+5)+2$. Hint: Write out the necessary transformations in order and then apply them one at a time to the original graph.

Problem \#6

I) Solve $\cos (\sin (x))=1$ for x.
II) Given that $\theta=\tan ^{-1}\left(\frac{4}{3}\right)$ find $\sin (\theta), \cos (\theta), \sec (\theta)$, and $\csc (\theta)$.

