Math 1: Calculus with Algebra Fall 2015

Quiz 6

Instructions: (24 points) This quiz consists of 4 problems. Credit is awarded for correct solutions in which you show your work. You will have 30 minutes to complete this quiz. You may not use a calculator, textbook, notes, or any outside source while taking this quiz.
($\left.6^{\text {pts }}\right)$ 1. Find the following derivatives:
(a) $\frac{d}{d x} \ln (\sin (x))=\frac{1}{\sin (x)} \frac{d}{d x}(\sin (x))=\frac{1}{\sin (x)} \cos (x)=\cot (x)$
(b) $\frac{d}{d x} e^{7 x}=7 e^{7 x}$
(c) $\frac{d}{d x}\left(x^{2}-1\right)^{8}=8\left(x^{2}-1\right)^{7} \frac{d}{d x}\left(x^{2}-1\right)=16 x\left(x^{2}-1\right)^{7}$
($\left.6^{\text {pts }}\right) \quad$ 2. Find y^{\prime} for the implicit equation $x^{2} y=\cos (x+y)$.
Solution: Differentiating both sides by x :

$$
x^{2} y^{\prime}+2 x y=-\sin (x+y)\left(1+y^{\prime}\right)
$$

Solving for y^{\prime} yields:

$$
y^{\prime}=-\frac{2 x y+\sin (x+y)}{x^{2}+\sin (x+y)}
$$

(6 $\left.6^{\mathrm{pts}}\right)$ 3. Find the following limits:
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x-1}=\frac{e^{0}-1}{0-1}=\frac{0}{1}=0$
(b) $\lim _{t \rightarrow 1} \frac{t^{8}-1}{t^{5}-1} \stackrel{L^{\prime} H}{=} \lim _{t \rightarrow 1} \frac{8 t^{7}}{5 t^{4}}=\frac{8}{5}$
($\left.6^{\text {pts }}\right)$ 4. True or False. If it is true, explain why. If it is false, explain why or given an example that disproves the statement.
(a) $\underline{\mathbf{F}} \frac{d}{d x} \cos ^{2}(x)=\left(\frac{d}{d x} \cos (x)\right)^{2}$

Solution: The left-hand side is $2 \cos (x) \sin (x)$ while the right-hand side is $(-\sin (x))^{2}=\sin ^{2}(x)$.
(b) $\xrightarrow{\mathbf{F}}$ The limit $\lim _{x \rightarrow 2^{+}}\left(\frac{1}{4-x^{2}}+\ln (x-2)\right)$ has an indeterminant form.

Solution: This limit is going to $-\infty-\infty$ which is not an indeterminant form.
(c) $\frac{\mathrm{F}}{} \frac{d}{d x} \arccos (x)=\frac{1}{\sqrt{1-x^{2}}}$

Solution: This is the derivative of $\arcsin (x)$.

