Quiz 5

Instructions: (24 points) This quiz consists of 4 problems. Credit is awarded for correct solutions in which you show your work. You will have 30 minutes to complete this quiz. You may not use a calculator, textbook, notes, or any outside source while taking this quiz.
$\left(6^{\mathrm{pts}}\right) \quad$ 1. Find $\frac{d}{d x}\left(\frac{4 x^{2}-\pi}{e^{x}}\right)$.
Solution: Using the quotient rule, we find

$$
\frac{d}{d x}\left(\frac{4 x^{2}-\pi}{e^{x}}\right)=\frac{e^{x} \cdot \frac{d}{d x}\left(4 x^{2}-\pi\right)-\left(4 x^{2}-\pi\right) \cdot \frac{d}{d x}\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{e^{x}(8 x)-\left(4 x^{2}-\pi\right) e^{x}}{e^{2 x}}=\frac{8 x-4 x^{2}+\pi}{e^{x}}
$$

$\left(6^{\mathrm{pts}}\right)$
2. Write down the derivative formulas for each of the 6 trigonometric functions.

$$
\begin{array}{lrl}
\frac{d}{d x} \sin (x)=\cos (x) & \frac{d}{d x} \cos (x) & =-\sin (x) \\
\frac{d}{d x} \csc (x) & =-\csc (x) \cot (x) & \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \\
\frac{d}{d x} \tan (x) & =\sec ^{2}(x) & \frac{d}{d x} \cot (x)=-\csc ^{2}(x)
\end{array}
$$

($\left.6^{\text {pts }}\right)$ 3. Find the velocity and acceleration functions of $s(x)=x^{2} \ln (x)$. (Don't worry about units.) Solution: The velocity function is

$$
v(x)=s^{\prime}(x)=(2 x) \ln (x)+x^{2}\left(\frac{1}{x}\right)=2 x \ln (x)+x .
$$

The acceleration function is

$$
a(x)=v^{\prime}(x)=2 \ln (x)+2 x\left(\frac{1}{x}\right)+1=2 \ln (x)+3 .
$$

$\left(6^{\text {pts }}\right)$
4. Find each of the following derivatives:

$$
\frac{d}{d x}\left(5 \log _{10}(x)\right)=\frac{5}{x \ln (10)}
$$

$$
\frac{d}{d x}\left(6^{x}\right)=6^{x} \ln (6)
$$

$$
\frac{d}{d x}\left(\pi^{x}\right)=\pi^{x} \ln (\pi)
$$

