Quiz 4

Instructions: (24 points) This quiz consists of 4 problems covering material from the 5 th week of class. Credit is awarded for correct solutions in which you show your work. You will have 30 minutes to complete this quiz. You may not use a calculator, textbook, notes, or any outside source while taking this quiz.
($\left.6^{\text {pts }}\right)$ 1. Find the following limits (if they exist):
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-2 x-1}{x-3}$

Solution:

$$
\lim _{x \rightarrow 2} \frac{x^{3}-2 x-1}{x-3}=\frac{(2)^{3}-2(2)-1}{2-3}=\frac{8-4-1}{-1}=-3
$$

(b) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x} \cdot \frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}=\lim _{x \rightarrow 0} \frac{(x+4)-2^{2}}{x(\sqrt{x+4}+2)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+4}+2}=\frac{1}{\sqrt{4}+2}=\frac{1}{4}
$$

2. (Continuity)
(a) Let f be a function defined near a. State the definition of f being continuous at a.

Solution: We say f is continuous at a if $\lim _{x \rightarrow a} f(x)=f(a)$.
(b) Determine whether $g(x)=\left\{\begin{array}{ll}\sqrt{x^{2}+2 x+1} & x<-2 \\ x+3 & x \geq-2\end{array}\right.$ is continuous at $x=-1$.

Solution:

- $g(-1)=(-1)+3=2$.
- $\lim _{x \rightarrow-1^{-}} g(x)=\lim _{x \rightarrow-1^{-}}(x+3)=(-1)+3=2$.
- $\lim _{x \rightarrow-1^{+}} g(x)=\lim _{x \rightarrow-1^{+}}(x+3)=(-1)+3=2$.

These last two parts tell us that $\lim _{x \rightarrow-1} g(x)=2$. Since $\lim _{x \rightarrow-1} g(x)=g(-1)$, we conclude that g is continuous at $x=-1$.
Alternate solution: $\lim _{x \rightarrow-1} g(x)=\lim _{x \rightarrow-1}(x+3)=(-1)+3=2$ (since around $-1, g$ is defined by the same piece).
$\left(6^{\text {pts }}\right)$ 3. Determine the limits using the function graphs below:

(a) $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$

Solution: Since $\lim _{x \rightarrow 2} f(x)=1$ and $\lim _{x \rightarrow 2} g(x)=3$,

$$
\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=\frac{1}{3}
$$

(b) $\lim _{x \rightarrow \frac{1}{2}^{+}} g(x)$

Solution: As we approach from the right, we're using the second piece of g :

$$
\lim _{x \rightarrow \frac{1}{2}^{+}} g(x)=1
$$

$\left(6^{\text {pts }}\right)$
4. Consider the function $h(x)= \begin{cases}-\frac{1}{x} & -1<x<0 \\ \frac{1}{x} & 0<x<1 \\ x^{2}+2 & 1 \leq x<\frac{3}{2}\end{cases}$
(a) Find the vertical asymptote(s) of h.

Solution: $x=0$ is a vertical asymptote since $\lim _{x \rightarrow 0^{+}} h(x)=\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$.
(b) Find the discontinuities of h. For each one, label the type of discontinuity.

Solution: Both $-\frac{1}{x}$ and $\frac{1}{x}$ have an essential discontinuity at $x=0$ coming from the vertical asymptote.
$x^{2}+2$ is a polynomial so it has no discontinuities.
So the only places we need to check are $x=0$ and the breaking points between the different pieces of $h: x=0,1 .^{1}$
$x=0$ is an essential discontinuity because it's a vertical asymptote.
Checking $x=1$:

$$
\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} 1 / x=1
$$

but

$$
\lim _{x \rightarrow 1^{+}} h(x) \lim _{x \rightarrow 1^{+}}\left(x^{2}+2\right)=3
$$

So both one-sided limits exist and are finite. Hence it is a jump discontinuity.

$$
x=1 \text { is a jump discontinuity. }
$$

[^0]
[^0]: ${ }^{1}$ This means that the $x=0$ is redundant.

