Math 1: Calculus with AlgebraQuiz 4Fall 2015Name: Answer Key

Instructions: (24 points) This quiz consists of 4 problems covering material from the 5th week of class. Credit is awarded for correct solutions in which you **show your work**. You will have 30 minutes to complete this quiz. You may not use a calculator, textbook, notes, or any outside source while taking this quiz.

(6^{pts}) **1.** Find the following limits (if they exist):

(a)
$$\lim_{x \to 2} \frac{x^3 - 2x - 1}{x - 3}$$

Solution:
$$\lim_{x \to 2} \frac{x^3 - 2x - 1}{x - 3} = \frac{(2)^3 - 2(2) - 1}{2 - 3} = \frac{8 - 4 - 1}{-1} = -3$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}$$

Solution:
$$\lim_{x \to 0} \frac{\sqrt{x + 4} - 2}{x} \cdot \frac{\sqrt{x + 4} + 2}{\sqrt{x + 4} + 2} = \lim_{x \to 0} \frac{(x + 4) - 2^2}{x(\sqrt{x + 4} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{x + 4} + 2} = \frac{1}{\sqrt{4} + 2} = \frac{1}{4}.$$

 (6^{pts}) **2.** (Continuity)

(a) Let f be a function defined near a. State the definition of f being continuous at a. Solution: We say f is continuous at a if $\lim_{x\to a} f(x) = f(a)$.

(b) Determine whether $g(x) = \begin{cases} \sqrt{x^2 + 2x + 1} & x < -2 \\ x + 3 & x \ge -2 \end{cases}$ is continuous at x = -1.

Solution:

- g(-1) = (-1) + 3 = 2.
- $\lim_{x \to -1^{-}} g(x) = \lim_{x \to -1^{-}} (x+3) = (-1) + 3 = 2.$
- $\lim_{x \to -1^+} g(x) = \lim_{x \to -1^+} (x+3) = (-1) + 3 = 2.$

These last two parts tell us that $\lim_{x\to -1} g(x) = 2$. Since $\lim_{x\to -1} g(x) = g(-1)$, we conclude that g is continuous at x = -1.

Alternate solution: $\lim_{x\to -1} g(x) = \lim_{x\to -1} (x+3) = (-1) + 3 = 2$ (since around -1, g is defined by the same piece).

(6^{pts}) **3.** Determine the limits using the function graphs below:

(a) $\lim_{x \to 2} \frac{f(x)}{g(x)}$ Solution: Since $\lim_{x \to 2} f(x) = 1$ and $\lim_{x \to 2} g(x) = 3$,

$$\lim_{x \to 2} \frac{f(x)}{g(x)} = \frac{1}{3}.$$

(b) $\lim_{x \to \frac{1}{2}^+} g(x)$

Solution: As we approach from the right, we're using the second piece of g:

$$\lim_{x \to \frac{1}{2}^+} g(x) = 1.$$

(6^{pts}) **4.** Consider the function
$$h(x) = \begin{cases} -\frac{1}{x} & -1 < x < 0\\ \frac{1}{x} & 0 < x < 1\\ x^2 + 2 & 1 \le x < \frac{3}{2} \end{cases}$$

(a) Find the vertical asymptote(s) of h.

Solution: x = 0 is a vertical asymptote since $\lim_{x\to 0^+} h(x) = \lim_{x\to 0^+} \frac{1}{x} = \infty$. (b) Find the discontinuities of h. For each one, label the type of discontinuity.

Solution: Both $-\frac{1}{x}$ and $\frac{1}{x}$ have an essential discontinuity at x = 0 coming from the vertical asymptote.

 $x^2 + 2$ is a polynomial so it has no discontinuities.

So the only places we need to check are x = 0 and the breaking points between the different pieces of h: $x = 0, 1.^{1}$

x = 0 is an essential discontinuity because it's a vertical asymptote.

Checking x = 1:

$$\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} 1/x = 1$$

but

$$\lim_{x \to 1^+} h(x) \lim_{x \to 1^+} (x^2 + 2) = 3.$$

So both one-sided limits exist and are finite. Hence it is a jump discontinuity.

x = 1 is a jump discontinuity

¹This means that the x = 0 is redundant.