Quiz 2

Instructions: (24 points) This quiz consists of 5 problems covering material through the 2 nd week of class. Credit is awarded for correct solutions in which you show your work. You will have 30 minutes to complete this quiz. You may not use a calculator, textbook, notes, or any outside source while taking this quiz.
(4 $\left.4^{\text {pts }}\right)$ 1. True or False. If it is true, explain why. If it is false, explain why or given an example that disproves the statement.
(a) $\quad \mathbf{F}$ If f is a function then $f(3 x)=3 f(x)$.

Solution: The function $f(x)=x^{2}$ is a counterexample, since $f(2)=4 \neq f(3 \cdot 2)=$ 36.
(b) \mathbf{T} The average rate of change between a and b on a function f is the slope of the secant line between $(a, f(a))$ and $(b, f(b))$.
Solution: This the geometric definition we gave in class.
(c) $\quad \mathbf{F} \quad$ For any functions f and $g, f \circ g=g \circ f$.

Solution: The functions $f(x)=x^{2}$ and $g(x)=x+1$ are counterexamples, since $f \circ g=x^{2}+2 x+1 \neq=g \circ f=x^{2}+1$
(d) \mathbf{T} The graph of $-f(x)$ reflects the function $f(x)$ across the x-axis.

Solution: This the geometric definition we gave in class.
$\left(5^{\mathrm{pts}}\right)$
2. Consider the following two functions:

$$
f(x)=x^{2}-3 x+1 \quad g(x)=\sqrt{x}+1
$$

(a) (2 pts) Compute the average rate of change of f on the interval $[-1,4]$.

Solution: Compute $\frac{f(4)-f(-1)}{4-(-1)}=\frac{5-5}{5}=0$
(b) (3pts) Compute the average rate of change of $(f+g)$ on the interval $[0,1]$.

Solution: Compute $\frac{(f+g)(1)-(f+g)(0)}{1-0}=\frac{(-1+2)-(1+1)}{1-0}=\frac{1-2}{1}=-1$
($\left.5^{\mathrm{pts}}\right)$ 3. For each of the following functions f, write two functions, g and h so that $f=g \circ h$.
(a) $(2 \mathrm{pts}) f(x)=\sqrt{x^{2}+4}$
$g(x)=$
$h(x)=$
Solution: One possibility is $g(x)=\sqrt{x}$ and $h(x)=x^{2}+4$.
(b) $(3 \mathrm{pts}) f(x)=\frac{1+x^{2}}{x^{2}-4}$

$$
\begin{aligned}
& g(x)= \\
& h(x)= \\
& \text { Solution: One possibility is } g(x)=\frac{1+x}{x-4} \text { and } h(x)=x^{2} .
\end{aligned}
$$

($\left.5^{\text {pts }}\right)$ 4. For each of the transformations described write an algebraic expression that would perform the transformation on the graph of the function.
(a) (2 pts) Shift the graph of $y=f(x)$ two units up and three units to the right.

Solution: The transformation $f(x-3)+2$.
(b) (3pts) Shift the graph of $y=h(x)$ down 1 unit and then reflect across both the x and y axes.
Solution: The transformation $-(h(-x)-1)$.
$\left(5^{\mathrm{pts}}\right)$ 5. Match each of the following graphs with the function family that it belongs to.
(\boldsymbol{K}) Polynomial (even degree)
(■) Polynomial (odd degree)
(C) Reciprocal
(D) Root
(\mathbb{Z}) Trigonometric

(a) \qquad

(b) \qquad

(c) \qquad (d) \qquad

(e) \qquad

