
General Power Functions

Defining General Power Functions

In previous lectures, we discussed the properties and derivatives of positive power functions and negative
power functions. Today, we discuss power functions in general.

A power function is a function of the form

f(x) = xa,

where a is any real number. We understand intuitively what it means to raise x to the power of a natural
number n: we just multiply n copies of x together. We know what it means to raise x to the −n power:
just divide 1 by xn. Now we are asked to raise x to the power of a, where a is any real number, but what
does, say, 3π mean? It does not make sense to multiply π copies of 3 together. We have been ignoring this
question since we defined exponential functions, but now we intend to give you an answer.

First, restrict x to the positive real numbers and consider the exponential function ex and the natural
logarithmic function lnx. There is a great relationship built into ex and ln x: if we compose these two
functions with each other in either order, the resulting function is x:

eln x = x and ln(ex) = x.

This relationship is built into the definition of the natural logarithmic function: the quantity lnx is defined
to be the number such that e raised to the power of that number is x. Thus we get the first equation above
automatically. The second equation comes from asking the question: to what number must we raise e to get
ex? Obviously, the answer to this question is x, and thus the natural logarithm of ex is x. We say the the
functions ex and ln x are inverse functions of each other: if we take x and first apply ex, then ln x, or the
other way around, then the result is the same as if we did nothing to x at all. In a sense, ex and ln x cancel
each other out.

Still considering only positive real number x, consider the power function xa, where a is any real number.
We can use the fact that ex and ln x are inverses of each other to rewrite the power function xa:

xa =
(
eln x

)a
= ea ln x.

This last expression, ea ln x is what we will use to define xa for positive real numbers x. That is, we define
the quantity xa for positive real numbers x and all real numbers a to be e raised to the power of the quantity
a times the natural logarithm of x. In this way, we know how to compute, say, 3π, because we know what
it means to take the natural logarithm of 3, multiply it by π, and then raise e to the power of that number.
Thus, to the nearest thousandth, we have that

3π = eπ ln 3 = e3.142·1.099 = e3.451 = 31.544.

You may be thinking at this point that we merely shifted the problem from understanding how to raise
x to the power of a to understanding how to raise e to some power. How do we know how to calculate ea,
where a is any real number? There is an answer to this question, which is somewhat beyond the scope of
this course, but here it is anyway: there is another way to write ea. Specifically, we can write ea as

ea = 1 + a +
a2

2
+

a3

6
+

a4

24
+ · · ·+ an

n!
+ · · · .

We will not tell you why ea is equal to this infinite sum, this series as mathematicians would say, but it is
true, and you can verify it using any calculator. Specifically, you can show that

e = e1 = 1 + 1 +
1
2

+
1
6

+
1
24

+ · · ·+ 1
n!

+ · · · ,

and, in fact, this is where the mysterious number e comes from. You do need to know all of this for this
course, but it does justify why we know how to raise e to any power a: we can compute the infinite sum
above (or, at least, approximate it) and get the same number.

So, at this point, we know how to define xa when x is a positive real number. What about when x equals
0? To define 0a, we take the right limit of xa as x approaches 0. There are three cases:
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• If a > 0, then a ln x approaches negative infinity as x approaches 0 from the right. Therefore

lim
x→0+

xa = lim
x→0+

ea ln x = 0,

since ex has a left horizontal asymptote at y = 0. Thus we say that 0a = 0 when a > 0.

• If a = 0, then x0 equals 1 for all positive values of x. Therefore the limit as x approaches 0 of x0 is 1,
so we define 00 = 1.

• If a < 0, then a ln x approaches positive infinity as x approaches 0 from the right. Therefore

lim
x→0+

xa = lim
x→0+

ea ln x = +∞,

which means that the limit, for our purposes, is undefined. Therefore 0a is undefined for a < 0.

So, to summarize:

0a =





0 a > 0
1 a = 0
undefined a < 0

.

Now for the difficult part: how do we define xa when x is a negative number? The answer depends very
strongly on the value of a, for reasons well beyond the scope of this class having to do with complex numbers.
We state the definitions of (−x)a for x > 0 in terms of xa, which we already know how to define, below:

• if a is an even integer, then (−x)a = xa, so xa is an even function (as we already know).

• if a is an odd integer, then (−x)a = −(xa), making xa an odd function.

• if a is a rational number, and, when we write a as a reduced fraction, the denominator of a is even,
then (−x)a is undefined.

• if a is a rational number, and, when we write a as a reduced fraction, the denominator of a is odd,
then there are two possibilities:

– if the numerator of the reduced fraction is even, then (−x)a = xa.

– if the numerator of the reduced fraction is odd, then (−x)a = −(xa).

• if a is an irrational number, then xa is undefined.

So, for example:

• (−2)−4 = 2−4 = 1
16 .

• (−2)−3 = −(2−3) = − 1
8 .

• to find (−2)
10
16 , we write 10

16 as a reduced fraction:

10
16

=
5
8
.

The denominator of 5
8 is even, so (−2)

10
16 is undefined.

• to find (−2)
8
18 , we write 8

18 as a reduced fraction:

8
18

=
4
9
.

The denominator of 4
9 is odd, and its numerator is even, so (−2)

8
18 =

(
2

8
18

)
, whatever that number

might be.
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• to find (−2)−4.6, we write −4.6 as a reduced fraction:

−4.6 = −46
10

= −23
5

.

The denominator of − 23
5 is odd, and so is the numerator, so (−2)−4.6 = −(24.6).

• (−2)π is undefined, since π is an irrational number.

Now that we have fully defined the power functions, we will learn how to differentiate them.

Differentiating General Power Functions

Let f(x) = xa, where a is any real number. Then, where f(x) has a derivative, we have the formula:

df

dx
= axa−1.

The difficulty here is not in the formula, with which we should be familiar by now. The question of interest
is: at what points is the derivative of a power function defined?

Suppose p is a value of x in the domain of xa, as determined in the previous section. If p 6= 0, then
automatically xa has a derivative at p, and the formula above for the derivative applies. If p = 0, then the
situation is a bit more complicated:

• if a < 0, then xa does not have a derivative at 0, since xa is not defined at 0.

• if a = 0, then xa has a derivative at 0.

• if 0 < a < 1, then xa does not have a derivative at 0.

• if a ≥ 1 and xa is defined for negative values of x, then xa has a derivative at 0.

• if a ≥ 1 and xa is not defined for negative values of x, then xa does not have a derivative at 0.

Let us do a few examples to make this all clear. Consider the function f(x) = xπ. First, let us find the
formula for the derivative of f(x):

f ′(x) = πxπ−1.

Next, we determine the domain of f(x) and the points at which the derivative is defined. The number π
is positive, so f(x) is defined at x = 0, and it is irrational, so f(x) is not defined for negative numbers.
Therefore we know that f(x) has a derivative for all positive numbers, but not for 0.

Next, let us do a Chain Rule problem: let g(x) = (ex− 1)−
4
7 . We first find the formula for the derivative

at the points at which it exists:

g′(x) = −4
7
(ex − 1)−

4
7−1 · ex = −4

7
ex(ex − 1)−

4
7− 7

7 = −4
7
ex(ex − 1)−

11
7 .

Next we need to find the domain of g(x). First, we find the domain of the outside function, which is x−
4
7 .

This function is defined automatically for all positive numbers; it is not defined for 0, since − 4
7 is negative;

and it is defined for negative values of x, since − 4
7 , which is already in reduced form, has an odd denominator.

Therefore g(x) is defined whenever the inside function, ex−1, is not equal to 0. In other words, the condition
is ex 6= 1, so x 6= 0. Thus the domain of g(x) is

Dom(g) = {x ∈ R : x 6= 0}.
Finally, we could find where this composition has a derivative, but that is very complicated, so we will leave
the question of differentiability alone.

For another example, take h(x) =
√

1 + x2, which can also be written as f(x) = (1+x2)
1
2 . First, we find

a formula for its derivative:

f ′(x) =
1
2
(1 + x2)−

1
2 · 2x =

x

(1 + x2)
1
2

=
x√

1 + x2
.

3



As for the domain of h(x), we note that
√

x is only defined for x ≥ 0, but 1 + x2 is always greater than or
equal to 1, so h(x) is defined everywhere. It also turns out that h(x) has a derivative everywhere, but this
is harder to show.

Finally, take k(x) = 6
√

cos x− 3, which we can also write as (cos x − 3)
1
6 . Sometimes it is better to find

the domain of a function first, and this is one of those occasions. The outside function, x
1
6 , is defined for

x ≥ 0, so in order for x to be in the domain of k(x), we must have that cos x− 3 ≥ 0. We can rewrite this
as cos x ≥ 3, which is impossible, because the maximum value of cosx is 1. Therefore k(x) is not defined
anywhere, and so it is not differentiable anywhere either. This example illustrates the idea that being able
to write down a formula does not automatically imply that that formula defines a function with a non-empty
domain.
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