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6.6 Conditional Expectations, Recurrences and Algorithms

Probability is a very important tool in algorithm design. We have already seen two important
examples in which it is used—primality testing and hashing. In this section we will study several
more examples of probabilistic analysis in algorithms. We will focus on computing the running
time of various algorithms. When the running time of an algorithm is different for different
inputs of the same size, we can think of the running time of the algorithm as a random variable
on the sample space of inputs and analyze the expected running time of the algorithm. This us
a different understanding from studying just the worst case running time for an input of a given
size. We will then consider randomized algorithms, algorithms that depend on choosing something
randomly, and see how we can use recurrences to give bounds on their expected running times
as well.

For randomized algorithms, it will be useful to have access to a function which generates
random numbers. We will assume that we have a function randint(i,j), which generates a
random integer uniformly between i and j (inclusive) [this means it is equally likely to be any
number between i and j] and rand01(), which generates a random real number, uniformly
between 0 and 1 [this means that given any two pairs of real numbers (r1, r2) and (s1, s2) with
r2 − r1 = s2 − s1 and r1, r2, s1 and s2 all between 0 and 1, our random number is just as likely to
be between r1 and r2 as it is to be between s1 and s2]. Functions such as randint and rand01
are called random number generators. A great deal of number theory goes into the construction
of good random number generators.

When Running Times Depend on more than Size of Inputs

Exercise 6.6-1 Let A be an array of length n − 1 (whose elements are chosen from some
ordered set), sorted into increasing order. Let b be another element of that ordered
set that we want to insert into A to get a sorted array of length n. Assuming that the
elements of A and b are chosen randomly, what is the expected number of elements
of A that have to be shifted one place to the right to let us insert b?

Exercise 6.6-2 Let A(1 : n) denote the elements in positions 1 to n of the array A. A
recursive description of insertion sort is that to sort A(1 : n), first we sort A(1 : n−1),
and then we insert A(n), by shifting the elements greater than A(n) each one place to
the right and then inserting the original value of A(n) into the place we have opened
up. If n = 1 we do nothing. Let Sj(A(1 : j)) be the time needed to sort the portion
of A from place 1 to place j, and let Ij(A(1 : j), b) be the time needed to insert the
element b into a sorted list originally in the first j positions of A to give a sorted list in
the first j + 1 positions of A. Note that Sj and Ij depend on the actual array A, and
not just on the value of j. Use Sj and Ij to describe the time needed to use insertion
sort to sort A(1 : n) in terms of the time needed to sort A(1 : n − 1). Don’t forget
that it is necessary to copy the element in position i of A into a variable b before
we move elements of A(1 : i − 1) to the right to make a place for it, because this
moving process will write over A(i). Let T (n) be the expected value of Sn; that is,
the expected running time of insertion sort on a list of n items. Write a recurrence for
T (n) in terms of T (n−1) by taking expected values in the equation that corresponds
to your previous description of the time needed to use insertion sort on a particular
array. Solve your recurrence relation in big-Θ terms.
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If X is the random variable with X(A, b) equal to the number of items we need to move one
place to the right in order to insert b into the resulting empty slot in A, then X takes on the
values 0, 1, . . . , n − 1 with equal probability 1/n. Thus we have

E(x) =
n−1∑

i=0

i
1
n

=
1
n

n−1∑

i=0

i =
1
n

(n − 1)n
2

=
n − 1

2
.

Using Sj(A(1 : j)) to stand for the time to sort the portion of the array A from places 1 to
j by insertion sort, and Ij(A(1 : j), b) to stand for the time needed to insert b into a sorted list
in the first j positions of the array A, moving all items larger than j to the right one place and
putting b into the empty slot, we can write that for insertion sort

Sn(A(1 : n)) = Sn−1(A(1 : n − 1)) + In−1(A(1 : n − 1), A(n)) + c1.

We have included the constant term c1 for the time it takes to copy the value of A(n) into
some variable b, because we will overwrite A(n) in the process of moving items one place to the
right. Using the additivity of expected values, we get

E(Sn) = E(Sn−1) + E(In−1) + E(c1).

Using T (n) for the expected time to sort A(1 : n) by insertion sort, and the result of the previous
exercise, we get

T (n) = T (n − 1) + c2
n − 1

2
+ c1.

where we include the constant c2 because the time needed to do the insertion is going to be
proportional to the number of items we have to move plus the time needed to copy the value of
A(n) into the appropriate slot (which we will assume we have included in c1). We can say that
T (1) = 1 (or some third constant) because with a list of size 1 we have to realize it has size 1,
and then do nothing. It might be more realistic to write

T (n) ≤ T (n − 1) + cn

and
T (n) ≥ T (n − 1) + c′n,

because the time needed to do the insertion may not be exactly proportional to the number of
items we need to move, but might depend on implementation details. By iterating the recurrence
or drawing a recursion tree, we see that T (n) = Θ(n2). (We could also give an inductive proof.)
Since the best-case time of insertion sort is Θ(n) and the worst-case time is Θ(n2), it is interesting
to know that the expected case is much closer to the worst-case than the best case.

Conditional Expected Values

Our next example is cooked up to introduce an idea that we often use in analyzing the expected
running times of algorithms, especially randomized algorithms.
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Exercise 6.6-3 I have two nickels and two quarters in my left pocket and 4 dimes in my
right pocket. Suppose I flip a penny and take two coins from my left pocket if it is
heads, and two coins from my right pocket if it is tails. Assuming I am equally likely
to choose any coin in my pocket at any time, what is the expected amount of money
that I draw from my pocket?

You could do this problem by drawing a tree diagram or by observing that the outcomes can
be modeled by three tuples in which the first entry is heads or tails, and the second and third
entries are coins. Thus our sample space is HNQ, HQN, HQQ, HNN, TDD The probabilities
of these outcomes are 1

6 , 1
6 , 1

12 , 1
12 , and 1

2 respectively. Thus our expected value is

30
1
6

+ 30
1
6

+ 50
1
12

+ 10
1
12

+ 20
1
2

= 25.

Here is a method that seems even simpler. If the coin comes up heads, I have an expected
value of 15 cents on each draw, so with probability 1/2, our expected value is 30 cents. If the coin
comes up tails, I have an expected value of ten cents on each draw, so with probability 1/2 our
expected value is 20 cents. Thus it is natural to expect that our expected value is 1

230+ 1
220 = 25

cents. In fact, if we group together the 4 outcomes with an H first, we see that their contribution
to the expected value is 15 cents, which is 1/2 times 30, and if we look at the single element
which has a T first, then its contribution to the sum is 10 cents, which is half of 20 cents.

In this second view of the problem, we took the probability of heads times the expected value of
our draws, given that the penny came up heads, plus the probability of tails times the expected
value of our draws, given that the penny came came up tails. In particular, we were using a
new (and as yet undefined) idea of conditional expected value. To get the conditional expected
value if our penny comes up heads, we could create a new sample space with four outcomes,
NQ, QN, NN, QQ, with probabilities 1

3 , 1
3 , 1

6 , and 1
6 . In this sample space the expected amount

of money we draw in two draws is 30 cents (15 cents for the first draw plus 15 cents for the
second), so we would say the conditional expected value of our draws, given that the penny came
up heads, was 30 cents. With a one-element sample space {DD}, we see that we would say that
the conditional expected value of our draws, given that the penny came up tails, is 20 cents.

How do we define conditional expected value? Rather than create a new sample space as we
did above, we use the idea of a new sample space (as we did in discovering a good definition for
conditional probability) to lead us to a good definition for conditional expected value. Namely,
to get the conditional expected value of X given that an event F has happened we use our
conditional probability weights for the elements of F , namely P (x)/P (F ) is the weight for the
element x of F , and pretend F is our sample space. Thus we define the conditional expected
value of X given F by

E(X|F ) =
∑

x:x∈F

X(x)
P (x)
P (F )

. (6.40)

Remember that we defined the expected value of a random variable X with values x1, x2, . . . xk

by

E(X) =
k∑

i=1

xiP (X = xi),

where X = xi stands for the event that X has the value xi. Using our standard notation for
conditional probabilities, P (X = xi|F ) stands for the conditional probability of the event X = xi
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given the event F . This lets us rewrite Equation 6.40 as

E(X|F ) =
k∑

i=1

xiP (X = xi|F ).

Theorem 6.22 Let X be a random variable defined on a sample space S and let F1, F2, . . .Fn

be disjoint events whose union is S (i.e. a partition of S). Then

E(X) =
n∑

i=1

E(X|Fi)P (Fi).

Proof: The proof is simply an exercise in applying definitions.

Randomized algorithms

Exercise 6.6-4 Consider an algorithm that, given a list of n numbers, prints them all out.
Then it picks a random integer between 1 and 3. If the number is 1 or 2, it stops.
If the number is 3 it starts again from the beginning. What is the expected running
time of this algorithm?

Exercise 6.6-5 Consider the following variant on the previous algorithm:

funnyprint(n)
if (n == 1)

return
for i = 1 to n

print i
x = randint(1,n)
if (x > n/2)

funnyprint(n/2)
else

return

What is the expected running time of this algorithm?

For Exercise 6.6-4, with probability 2/3 we will print out the numbers and quit, and with
probability 1/3 we will run the algorithm again. Using Theorem 6.22, we see that if T (n) is the
expected running time on a list of length n, then there is a constant c such that

T (n) =
2
3
cn +

1
3
(cn + T (n)),

which gives us 2
3T (n) = cn. This simplifies to T (n) = 3

2cn.

Another view is that we have an independent trials process, with success probability 2/3
where we stop at the first success, and for each round of the independent trials process we spend
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Θ(n) time. Letting T be the running time (note that T is a random variable on the sample space
1, 2, 3 with probabilities 1

3 for each member) and R be the number of rounds, we have that

T = R · Θ(n)

and so
E(T ) = E(R)Θ(n).

Note that we are applying Theorem 6.10 since in this context Θ(n) behaves as if it were a
constant7, since n does not depend on R. By Lemma 6.12, we have that E(R) = 3/2 and so
E(T ) = Θ(n).

In Exercise 6.6-5, we have a recursive algorithm, and so it is appropriate to write down a
recurrence. We can let T (n) stand for the expected running time of the algorithm on an input of
size n. Notice how we are changing back and forth between letting T stand for the running time
of an algorithm and the expected running time of an algorithm. Usually we use T to stand for
the quantity of most interest to us, either running time if that makes sense, or expected running
time (or maybe worst-case running time) if the actual running time might vary over different
inputs of size n. The nice thing will be that once we write down a recurrence for the expected
running time of an algorithm, the methods for solving it will be those for we have already learned
for solving recurrences. For the problem at hand, we immediately get that with probability 1/2
we will be spending n units of time (we should really say Θ(n) time), and then terminating, and
with probability 1/2 we will spend n units of time and then recurse on a problem of size n/2.
Thus using Theorem 6.22, we get that

T (n) = n +
1
2
T (n/2)

Including a base case of T (1) = 1, we get that

T (n) =

{
1
2T (n/2) + n if n > 1
1 if n = 1

.

A simple proof by induction shows that T (n) = Θ(n). Note that the Master Theorem (as we
originally stated it) doesn’t apply here, since a < 1. However, one could also observe that the
solution to this recurrence is no more than the solution to the recurrence T (n) = T (n/2) + n,
and then apply the Master Theorem.

Selection revisited

We now return to the selection algorithm from Section 5.4. The purpose of the algorithm is to
select the ith smallest element in a set with some underlying order. Recall that in this algorithm,
we first picked an an element p in the middle half of the set, that is, one whose value was
simultaneously larger than at least 1/4 of the items and smaller than at least 1/4 of the items.
We used p to partition the items into two sets and then recursed on one of the two sets. If you
recall, we worked very hard to find an item in the middle half, so that our partitioning would
work well. It is natural to try instead to just pick a partition element at random, because, with
probability 1/2, this element will be in the middle half. We can extend this idea to the following
algorithm:

7What we mean here is that T ≥ Rc1n for some constant c1 and T ≤ Rc2n for some other constant c2. Then
we apply Theorem 6.10 to both these inequalities, using the fact that if X > Y , then E(X) > E(Y ) as well.
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RandomSelect(A,i,n)
(selects the ith smallest element in set A, where n = |A| )
if (n = 1)

return the one item in A
else

p = randomElement(A)
Let H be the set of elements greater than p
Let L be the set of elements less than or equal to p
If H is empty

put p in H
if (i ≤ |L|)

Return RandomSelect(L, i, |L|)
else

Return RandomSelect(H, i − |L|, |H|)

Here randomElement(A) returns one element from A uniformly at random. We use this
element as our partition element; that is, we use it to divide A into sets L and H with every
element less than the partition element in L and every element greater than it in H. We add the
special case when H is empty, to ensure that both recursive problems have size strictly less than
n. This simplifies a detailed analysis, but is not strictly necessary. At the end of this section we
will show how to get a recurrence that describes fairly precisely the time needed to carry out this
algorithm. However, by being a bit less precise, we can still get the same big-O upper bound
with less work.

When we choose our partition element, half the time it will be between 1
4n and 3

4n. Then
when we partition our set into H and L, each of these sets will have no more than 3

4n elements.
The other half of the time each of H and L will have no more than n elements. In any case, the
time to partition our set into H and L is O(n). Thus we may write

T (n) ≤
{

1
2T (3

4n) + 1
2T (n) + bn if n > 1

d if n = 1.

We may rewrite the recursive part of the recurrence as

1
2
T (n) ≤ 1

2
T

(
3
4
n

)
+ bn,

or
T (n) ≤ T

(
3
4
n

)
+ 2bn = T

(
3
4
n

)
+ b′n.

Notice that it is possible (but unlikely) that each time our algorithm chooses a pivot element,
it chooses the worst one possible, in which case the selection process could take n rounds, and
thus take time Θ(n2). Why, then, is it of interest? If involves far less computation than finding
the median of medians, and its expected running time is still Θ(n). Thus it is reasonable to
suspect that on the average, it would be significantly faster than the deterministic process. In
fact, with good implementations of both algorithms, this will be the case.

Exercise 6.6-6 Why does every solution to the recurrence

T (n) ≤ T

(
3
4
n

)
+ b′n.
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have T (n) = O(n)?

By the master theorem we know that any solution to this recurrence is O(n), giving a proof
of our next Theorem.

Theorem 6.23 Algorithm RandomSelect has expected running time O(n).

Quicksort

There are many algorithms that will efficiently sort a list of n numbers. The two most common
sorting algorithms that are guaranteed to run in O(n log n) time are MergeSort and HeapSort.
However, there is another algorithm, Quicksort, which, while having a worst-case running time of
O(n2), has an expected running time of O(n log n). Moreover, when implemented well, it tends to
have a faster running time than MergeSort or HeapSort. Since many computer operating systems
and programs come with quicksort built in, it has become the sort of choice in many applications.
In this section, we will see why it has expected running time O(n log n). We will not concern
ourselves with the low-level implementation issues that make this algorithm the fastest one, but
just with a high-level description.

Quicksort actually works similarly to the RecursiveSelect algorithm of the previous subsection.
We pick a random element, and then use it to partition the set of items into two sets L and H.
In this case, we don’t recurse on one or the other, but recurse on both, sorting each one. After
both L and H have been sorted, we just concatenate them to get a sorted list. (In fact, quicksort
is usually done “in place” by pointer manipulation and so the concatenation just happens.) Here
is a pseudocode description of quicksort.

Quicksort(A,n)
if (n = 1)

return the one item in A
else

p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let � = |L|
If H is empty

put p in H
A1 = QuickSort(H,h)
A2 = QuickSort(L,�)
return the concatenation of A1 and A2

There is an analysis of quicksort similar to the detailed analysis of RecursiveSelect at the end
of the section, and this analysis is a problem at the end of the section. Instead, based on the
preceding analysis of RandomSelect we will think about modifying the algorithm a bit in order
to make the analysis easier. First, consider what would happen if the random element was the
median each time. Then we would be solving two subproblems of size n/2, and would have the
recurrence

T (n) =

{
2T (n/2) + O(n) if n > 1
O(1) if n = 1
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and we know by the master theorem that all solutions to this recurrence have T (n) = O(n log n).
In fact, we don’t need such an even division to guarantee such performance.

Exercise 6.6-7 Suppose you had a recurrence of the form

T (n) =

{
T (ann) + T ((1 − an)n) + O(n) if n > 1
O(1) if n = 1

,

where an is between 1/4 and 3/4. Show that all solutions of a recurrence of this form
have T (n) = O(n log n). What do we really need to assume about an in order to
prove this upper bound?

We can prove that T (n) = O(n log n) by induction, or via a recursion tree, noting that there
are O(log n) levels, and each level has at most O(n) work. (The details of the recursion tree are
complicated somewhat by the fact that an varies with n, while the details of an inductive proof
simply use the fact that an and 1 − an are both no more than 3/4.) So long as we know there
is some positive number a < 1 such that an < a for every n, then we know we have at most
log(1/a) n levels in a recursion tree, with at most cn units of work per level for some constant c,
and thus we have the same upper bound in big-O terms.

What does this tell us? As long as our problem splits into two pieces, each having size at least
1/4 of the items, quicksort will run in O(n log n) time. Given this, we will modify our algorithm
to enforce this condition. That is, if we choose a pivot element p that is not in the middle half,
we will just pick another one. This leads to the following algorithm:

Slower Quicksort(A,n)
if (n = 1)

return the one item in A
else

Repeat
p = randomElement(A)
Let H be the set of elements greater than p; Let h = |H|
Let L be the set of elements less than or equal to p; Let � = |L|

Until (|H| ≥ n/4) and (|L| ≥ n/4)
A1 = QuickSort(H,h)
A2 = QuickSort(L,�)
return the concatenation of A1 and A2

Now let’s analyze this algorithm. Let r be the number of times we execute the loop to pick
p, and let ann be the position of the pivot element. Then if T (n) is the expected running time
for a list of length n, then for some constant b

T (n) ≤ E(r)bn + T (ann) + T ((1 − an)n),

since each iteration of the loop takes O(n) time. Note that we take the expectation of r, because
T (n) stands for the expected running time on a problem of size n. Fortunately, E(r) is simple to
compute, it is just the expected time until the first success in an independent trials process with
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success probability 1/2. This is 2. So we get that the running time of Slower Quicksort satisfies
the recurrence

T (n) ≤
{

T (ann) + T ((1 − an))n + b′n if n > 1
d if n = 1

,

where an is between 1/4 and 3/4. Thus by Exercise 6.6-7 the running time of this algorithm is
O(n log n).

As another variant on the same theme, observe that looping until we have(|H| ≥ n/4 and
|L| ≥ n/4, is effectively the same as choosing p, finding H and L and then calling Slower
Quicksort(A,n) once again if either H or L has size less than n/4. Then since with probability
1/2 the element p is between n/4 and 3n/4, we can write

T (n) ≤ 1
2
T (n) +

1
2
(T (ann) + T ((1 − an)n) + bn),

which simplifies to
T (n) ≤ T (ann) + T ((1 − an)n) + 2bn,

or
T (n) ≤ T (ann) + T ((1 − an)n) + b′n.

Again by Exercise 6.6-7 the running time of this algorithm is O(n log n).

Further, it is straightforward to see that the expected running time of Slower Quicksort is no
less than half that of Quicksort (and, incidentally, no more than twice that of quicksort) and so
we have shown:

Theorem 6.24 Quicksort has expected running time O(n log n).

A more exact analysis of RandomSelect

Recall that our analysis of the RandomSelect was based on using T (n) as an upper bound for
T (|H|) or T (|L|) if either the set H or the set L had more than 3n/4 elements. Here we show
how one can avoid this assumption. The kinds of computations we do here are the kind we would
need to do if we wanted to try to actually get bounds on the constants implicit in our big-O
bounds.

Exercise 6.6-8 Explain why, if we pick the kth element as the random element in Ran-
domSelect (k �= n), our recursive problem is of size no more than max{k, n − k}.

If we pick the kth element, then we recurse either on the set L, which has size k, or on the
set H which has size n − k. Both of these sizes are at most max{k, n − k}. (If we pick the nth
element, then k = n and thus L actually has size k − 1 and H has size n − k + 1.)

Now let X be the random variable equal to the rank of the chosen random element (e.g. if the
random element is the third smallest, X = 3.) Using Theorem 6.22 and the solution to Exercise
6.6-8, we can write that

T (n) ≤
{ ∑n−1

k=1 P (X = k)(T (max{k, n − k}) + bn) + P (X = n)(T (max{1, n − 1} + bn) if n > 1
d if n = 1.
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Since X is chosen uniformly between 1 and n, P (X = k) = 1/n for all k. Ignoring the base case
for a minute, we get that

T (n) ≤
n−1∑

k=1

1
n

(T (max{k, n − k}) + bn) +
1
n

(T (n − 1) + bn)

=
1
n

(
n−1∑

k=1

T (max{k, n − k})
)

+ bn +
1
n

(T (n − 1) + bn).

Now if n is odd and we write out
∑n−1

k=1 T (max{k, n − k}), we get

T (n − 1) + T (n − 2) + · · · + T (�n/2�) + T �n/2�) + · · · + T (n − 2) + T (n − 1),

which is just 2
∑n−1

k=�n/2� T (k). If n is even we write out
∑n−1

k=1 T (max{k, n − k}), we get

T (n − 1) + T (n − 2) + · · · + T (n/2) + T (1 + n/2) + · · · + T (n − 2) + T (n − 1),

which is less than 2
∑n−1

k=n/2 T (k). Thus we can replace our recurrence by

T (n) ≤
{

2
n

(∑n−1
k=n/2 T (k)

)
+ 1

nT (n − 1) + bn if n > 1
d if n = 1.

(6.41)

If n is odd, the lower limit of the sum is a half-integer, so the possible integer values of the dummy
variable k run from �n/2� to n − 1. Since this is the natural way to interpret a fractional lower
limit, and since it corresponds to what we wrote in both the n even and n odd case above, we
adopt this convention.

Exercise 6.6-9 Show that every solution to the recurrence in Equation 6.41 has T (n) =
O(n).

We can prove this by induction. We try to prove that T (n) ≤ cn for some constant c. By the
natural inductive hypothesis, we get that

T (n) ≤ 2
n




n−1∑

k=n/2

ck



 +
1
n

c(n − 1) + bn

=
2
n




n−1∑

k=1

ck −
n/2−1∑

k=1

ck



 +
1
n

c(n − 1) + bn

≤ 2c

n

(
(n − 1)n

2
− (n

2 − 1)n
2

2

)
+ c + bn

=
2c

n

3n2

4 − n
2

2
+ c + bn

=
3
4
cn +

c

2
+ bn

= cn − (
1
4
cn − bn − c

2
)

Notice that so far, we have only assumed that there is some constant c such that T (k) < ck for
k < n. We can choose a larger c than the one given to us by this assumption without changing
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the inequality T (k) < ck. By choosing c so that 1
4cn− bn− c

2 is nonnegative (for example c ≥ 8b
makes this term at least bn − 2b which is nonnegative for n ≥ 2), we conclude the proof, and
have another proof of Theorem 6.23.

This kind of careful analysis arises when we are trying to get an estimate of the constant in
a big-O bound (which we decided not to do in this case).

Important Concepts, Formulas, and Theorems

1. Expected Running Time. When the running time of an algorithm is different for different
inputs of the same size, we can think of the running time of the algorithm as a random vari-
able on the sample space of inputs and analyze the expected running time of the algorithm.
This us a different understanding from studying just the worst case running time.

2. Randomized Algorithm. Arandomized algorithm is an algorithm that depends on choosing
something randomly.

3. Random Number Generator. A random number generator is a procedure that generates a
number that appears to be chosen at random. Usually the designer of a random number
generator tries to generate numbers that appear to be uniformly distributed.

4. Insertion Sort. A recursive description of insertion sort is that to sort A(1 : n), first we
sort A(1 : n− 1), and then we insert A(n), by shifting the elements greater than A(n) each
one place to the right and then inserting the original value of A(n) into the place we have
opened up. If n = 1 we do nothing.

5. Expected Running Time of Insertion Sort. If T (n) is the expected time to use insertion sort
on a list of length n, then there are constants c and c′ such that T (n) ≤ T (n− 1) + cn and
T (n) ≥ T (n − 1) + c′n,. This means that T (n) = Θ(n2). However the best case running
time of insertion sort is Θ(n).

6. Conditional Expected Value. We define the conditional expected value of X given F by
E(X|F ) =

∑
x:x∈F X(x) P (x)

P (F ) . This is equivalent to E(X|F ) =
∑k

i=1 xiP (X = xi|F ).

7. Randomized Selection Algorithm. In the randomized selection algorithm to select the ith
smallest element of a set A, we randomly choose a pivot element p in A, divide the rest
of A into those elements that come before p (in the underlying order of A) and those that
come after, put the pivot into the smaller set, and then recursively apply the randomized
selection algorithm to find the appropriate element of the appropriate set.

8. Running Time of Randomized Select. Algorithm RandomSelect has expected running time
O(n). Because it does less computation than the deterministic selection algorithm, on
the average a good implementation will run faster than a good implementation of the
deterministic algorithm, but the worst case behavior is Θ(n2).

9. Quicksort. Quicksort is a sorting algorithm in which we randomly choose a pivot element
p in A, divide the rest of A into those elements that come before p (in the underlying order
of A) and those that come after, put the pivot into the smaller set, and then recursively
apply the Quicksort algorithm to sort each of the smaller sets, and concatenate the two
sorted lists. We do nothing if a set has size one.
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10. Running Time of Quicksort. Quicksort has expected running time O(n log n). It has worst
case running time Θ(n2). Good implementations of Quicksort have proved to be faster on
the average than good implementations of other sorting algorithms.

Problems

1. Given an array A of length n (chosen from some set that has an underlying ordering),
we can select the largest element of the array by starting out setting L = A(1), and then
comparing L to the remaining elements of the array one at a time, replacing L by A(i) if
A(i) is larger than L. Assume that the elements of A are randomly chosen. For i > 1, let
Xi be 1 if element i of A is larger than any element of A(1 : i − 1). Let X1 = 1. Then
what does X1 + X2 + · · · + Xn have to do with the number of times we assign a value to
L? What is the expected number of times we assign a value to L?

2. Let A(i : j) denote the array of items in positions i through j of the Array A. In selection
sort, we use the method of Exercise 6.6-1 to find the largest element of the array A and its
position k in the array, then we exchange the elements in position k and n of Array A, and
we apply the same procedure recursively to the array A(1 : n − 1). (Actually we do this if
n > 1; if n = 1 we do nothing.) What is the expected total number of times we assign a
value to L in the algorithm selection sort?

3. Show that if Hn stands for the nth harmonic number, then

Hn + Hn−1 + · · · + H2 = Θ(n log n).

4. In a card game, we remove the Jacks, Queens, Kings, and Aces from a deck of ordinary
cards and shuffle them. You draw a card. If it is an Ace, you are paid a dollar and the game
is repeated. If it is a Jack, you are paid two dollars and the game ends; if it is a Queen,
you are paid three dollars and the game ends; and if it is a King, you are paid four dollars
and the game ends. What is the maximum amount of money a rational person would pay
to play this game?

5. Why does every solution to T (n) ≤ T (2
3n) + bn have T (n) = O(n)?

6. Show that if in Algorithm Random Select we remove the instruction

If H is empty
put p in H,

then if T (n) is the expected running time of the algorithm, there is a constant b such that
T (n) satisfies the recurrence

T (n) ≤ 2
n − 1

n−1∑

k=n/2

T (k) + bn.

Show that if T (n) satisfies this recurrence, then T (n) = O(n).
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7. Suppose you have a recurrence of the form

T (n) ≤ T (ann) + T ((1 − an)n) + bn if n > 1,

where an is between 1
5 and 4

5 . Show that all solutions to this recurrence are of the form
T (n) = O(n log n).

8. Prove Theorem 6.22.

9. A tighter (up to constant factors) analysis of quicksort is possible by using ideas very
similar to those that we used for the randomized selection algorithm. More precisely, we
use Theorem 5.6.1, similarly to the way we used it for select. Write down the recurrence
you get when you do this. Show that this recurrence has solution O(n log n). In order to
do this, you will probably want to prove that T (n) ≤ c1n log n− c2n for some constants c1

and c2.

10. It is also possible to write a version of rhe randomized Selection algorithm analogous to
Slower Quicksort. That is, when we pick out the random pivot element, we check if it is in
the middle half and discard it if it is not. Write this modified selection algorithm, give a
recurrence for its running time, and show that this recurrence has solution O(n).

11. One idea that is often used in selection is that instead of choosing a random pivot element,
we choose three random pivot elements and then use the median of these three as our pivot.
What is the probability that a randomly chosen pivot element is in the middle half? What
is the probability that the median of three randomly chosen pivot elements is in the middle
half? Does this justify the choice of using the median of three as pivot?

12. Is the expected running time of Quicksort Ω(n log n)?

13. A random binary search tree on n keys is formed by first randomly ordering the keys, and
then inserting them in that order. Explain why in at least half the random binary search
trees, both subtrees of the root have between 1

4n and 3
4n keys. If T (n) is the expected

height of a random binary search tree on n keys, explain why T (n) ≤ 1
2T (n) + 1

2T (3
4n) + 1.

(Think about the definition of a binary tree. It has a root, and the root has two subtrees!
What did we say about the possible sizes of those subtrees?) What is the expected height
of a one node binary search tree? Show that the expected height of a random binary search
tree is O(log n).

14. The expected time for an unsuccessful search in a random binary search tree on n keys (see
Problem 13 for a definition) is the expected depth of a leaf node. Arguing as in Problem
13 and the second proof of Theorem 5.6.2, find a recurrence that gives an upper bound on
the expected depth of a leaf node in a binary search tree and use it to find a big Oh upper
bound on the expected depth of a leaf node.

15. The expected time for a successful search in a random binary search tree on n nodes (see
problem 13 for a definition) is the expected depth of a node of the tree. With probability
1
n the node is the root, which has depth 0; otherwise the expected depth is one plus the
expected depth of one of its subtrees. Argue as in Problem 13 and the first proof of
Theorem 6.23 to show that if T (n) is the expected depth of a node in a binary search tree,
then T (n) ≤ n−1

n (1
2T (n) + 1

2T (3
4n)) + 1. What big Oh upper bound does this give you on

the expected depth of a node in a random binary search tree on n nodes?
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16. Consider the following code for searching an array A for the maximum item:

max = −∞
for i = 1 to n

if (A[i] > max)
max = A[i]

If A initially consists of n nodes in a random order, what is the expected number of times
that the line max = A[i] is executed? (Hint: Let Xi be the number of times that max = A[i]
is executed in the ith iteration of the loop.)

17. You are a contestant in the game show “Let’s make a Deal.” In this game show, there are
three curtains. Behind one of the curtains is a new car, and behind the other two are cans
of spam. You get to pick one of the curtains. After you pick that curtain, the emcee, Monte
Hall, who we assume knows where the car is, reveals what is behind one of the curtains
that you did not pick, showing you some cans of spam. He then asks you if you would like
to switch your choice of curtain. Should you switch? Why or why not? Please answer this
question carefully. You have all the tools needed to answer it, but several math Ph.D.’s are
on record (in Parade Magazine) giving the wrong answer.


