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6.3 Conditional Probability and Independence

Conditional Probability

Two cubical dice each have a triangle painted on one side, a circle painted on two sides and
a square painted on three sides. Applying the principal of inclusion and exclusion, we can
compute that the probability that we see a circle on at least one top when we roll them is
1/3 + 1/3 − 1/9 = 5/9. We are experimenting to see if reality agrees with our computation. We
throw the dice onto the floor and they bounce a few times before landing in the next room.

Exercise 6.3-1 Our friend in the next room tells us both top sides are the same. Now
what is the probability that our friend sees a circle on at least one top?

Intuitively, it may seem as if the chance of getting circles ought to be four times the chance
of getting triangles, and the chance of getting squares ought to be nine times as much as the
chance of getting triangles. We could turn this into the algebraic statements that P (circles)
= 4P (triangles) and P (squares) = 9P (triangles). These two equations and the fact that the
probabilities sum to 1 would give us enough equations to conclude that the probability that our
friend saw two circles is now 2/7. But does this analysis make sense? To convince ourselves,
let us start with a sample space for the original experiment and see what natural assumptions
about probability we can make to determine the new probabilities. In the process, we will be
able to replace intuitive calculations with a formula we can use in similar situations. This is a
good thing, because we have already seen situations where our intuitive idea of probability might
not always agree with what the rules of probability give us.

Let us take as our sample space for this experiment the ordered pairs shown in Table 6.2
along with their probabilities.

Table 6.2: Rolling two unusual dice

TT TC TS CT CC CS ST SC SS
1
36

1
18

1
12

1
18

1
9

1
6

1
12

1
6

1
4

We know that the event {TT, CC, SS} happened. Thus we would say while it used to have
probability

1
36

+
1
9

+
1
4

=
14
36

=
7
18

(6.13)

this event now has probability 1. Given that, what probability would we now assign to the event
of seeing a circle? Notice that the event of seeing a circle now has become the event CC. Should
we expect CC to become more or less likely in comparison than TT or SS just because we know
now that one of these three outcomes has occurred? Nothing has happened to make us expect
that, so whatever new probabilities we assign to these two events, they should have the same
ratios as the old probabilities.

Multiplying all three old probabilities by 18
7 to get our new probabilities will preserve the

ratios and make the three new probabilities add to 1. (Is there any other way to get the three
new probabilities to add to one and make the new ratios the same as the old ones?) This gives



6.3. CONDITIONAL PROBABILITY AND INDEPENDENCE 223

us that the probability of two circles is 1
9 · 18

7 = 2
7 . Notice that nothing we have learned about

probability so far told us what to do; we just made a decision based on common sense. When
faced with similar situations in the future, it would make sense to use our common sense in the
same way. However, do we really need to go through the process of constructing a new sample
space and reasoning about its probabilities again? Fortunately, our entire reasoning process can
be captured in a formula. We wanted the probability of an event E given that the event F
happened. We figured out what the event E ∩ F was, and then multiplied its probability by
1/P (F ). We summarize this process in a definition.

We define the conditional probability of E given F , denoted by P (E|F ) and read as “the
probability of E given F” by

P (E|F ) =
P (E ∩ F )

P (F )
. (6.14)

Then whenever we want the probability of E knowing that F has happened, we compute P (E|F ).
(If P (F ) = 0, then we cannot divide by P (F ), but F gives us no new information about our
situation. For example if the student in the next room says “A pentagon is on top,” we have no
information except that the student isn’t looking at the dice we rolled! Thus we have no reason to
change our sample space or the probability weights of its elements, so we define P (E|F ) = P (E)
when P (F ) = 0.)

Notice that we did not prove that the probability of E given F is what we said it is; we
simply defined it in this way. That is because in the process of making the derivation we made
an additional assumption that the relative probabilities of the outcomes in the event F don’t
change when F happens. This assumption led us to Equation 6.14. Then we chose that equation
as our definition of the new concept of the conditional probability of E given F .4

In the example above, we can let E be the event that there is more than one circle and F be
the event that both dice are the same. Then E ∩ F is the event that both dice are circles, and
P (E ∩ F ) is , from the table above, 1

9 . P (F ) is, from Equation 6.13, 7
18 . Dividing, we get the

probability of P (E|F ), which is 1
9/ 7

18 = 2
7 .

Exercise 6.3-2 When we roll two ordinary dice, what is the probability that the sum of
the tops comes out even, given that the sum is greater than or equal to 10? Use the
definition of conditional probability in solving the problem.

Exercise 6.3-3 We say E is independent of F if P (E|F ) = P (E). Show that when we roll
two dice, one red and one green, the event “The total number of dots on top is odd”
is independent of the event “The red die has an odd number of dots on top.”

Exercise 6.3-4 Sometimes information about conditional probabilities is given to us indi-
rectly in the statement of a problem, and we have to derive information about other
probabilities or conditional probabilities. Here is such an example. If a student knows
80% of the material in a a course, what do you expect her grade to be on a (well-
balanced) 100 question short-answer test about the course? What is the probability
that she answers a question correctly on a 100 question true-false test if she guesses
at each question she does not know the answer to? (We assume that she knows what

4For those who like to think in terms of axioms of probability, we could give an axiomatic definition of conditional
probability, and one of our axioms would be that for events E1 and E2 that are subsets of F , the ratio of the
conditional probabilities P (E1|F ) and P (E2|F ) is the same as the ratio of P (E) and P (F ).
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she knows, that is, if she thinks that she knows the answer, then she really does.)
What do you expect her grade to be on a 100 question True-False test to be?

For Exercise 6.3-2 let’s let E be the event that the sum is even and F be the event that
the sum is greater than or equal to 10. Thus referring to our sample space in Exercise 6.3-2,
P (F ) = 1/6 and P (E ∩ F ) = 1/9, since it is the probability that the roll is either 10 or 12.
Dividing these two we get 2/3.

In Exercise 6.3-3, the event that the total number of dots is odd has probability 1/2. Similarly,
given that the red die has an odd number of dots, the probability of an odd sum is 1/2 since
this event corresponds exactly to getting an even roll on the green die. Thus, by the definition
of independence, the event of an odd number of dots on the red die and the event that the total
number of dots is odd are independent.

In Exercise 6.3-4, if a student knows 80% of the material in a course, we would hope that
her grade on a well-designed test of the course would be around 80%. But what if the test is
a True-False test? Let R be the event that she gets the right answer, K be the event that she
knows that right answer and K be the event that she guesses. Then R = P (R∩K) + P (R∩K).
Since R is a union of two disjoint events, its probability would be the sum of the probabilities
of these two events. How do we get the probabilities of these two events? The statement of
the problem gives us implicitly the conditional probability that she gets the right answer given
that she knows the answer, namely one, and the probability that she gets the right answer if she
doesn’t know the answer, namely 1/2. Using Equation 6.14, we see that we use the equation

P (E ∩ F ) = P (E|F )P (F ) (6.15)

to compute P (R ∩ K) and P (R ∩ K), since the problem tells us directly that P (K) = .8 and
P (K) = .2. In symbols,

P (R) = P (R ∩ K) + P (R ∩ K)
= P (R|K)P (K) + P (R|K)P (K)
= 1 · .8 + .5 · .2 = .9

We have shown that the probability that she gets the right answer is .9. Thus we would expect
her to get a grade of 90%.

Independence

We said in Exercise 6.3-3 that E is independent of F if P (E|F ) = P (E). The product principle
for independent probabilities (Theorem 6.4) gives another test for independence.

Theorem 6.4 Suppose E and F are events in a sample space. Then E is independent of F if
and only if P (E ∩ F ) = P (E)P (F ).

Proof: First consider the case when F is non-empty. Then, from our definition in Exercise
6.3-3

E is independent of F ⇔ P (E|F ) = P (E).
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(Even though the definition only has an “if”, recall the convention of using “if” in definitions,
even though “if and only if” is meant.) Using the definition of P (E|F ) in Equation 6.14, in the
right side of the above equation we get

P (E|F ) = P (E)

⇔ P (E ∩ F )
P (F )

= P (E)

⇔ P (E ∩ F ) = P (E)P (F ).

Since every step in this proof was an if and only if statement we have completed the proof for
the case when F is non-empty.

If F is empty, then E is independent of F and both P (E)P (F ) and P (E ∩F ) are zero. Thus
in this case as well, E is independent of F if and only if P (E ∩ F ) = P (E)P (F ).

Corollary 6.5 E is independent of F if and only if F is independent of E.

When we flip a coin twice, we think of the second outcome as being independent of the
first. It would be a sorry state of affairs if our definition of independence did not capture this
intuitive idea! Let’s compute the relevant probabilities to see if it does. For flipping a coin
twice our sample space is {HH, HT, TH, TT} and we weight each of these outcomes 1/4. To
say the second outcome is independent of the first, we must mean that getting an H second is
independent of whether we get an H or a T first, and same for getting a T second. This gives us
that P (H first) = 1/4+1/4 = 1/2 and P (H second) = 1/2, while P (H first and H second) = 1/4.
Note that

P (H first)P (H second) =
1
2
· 1
2

=
1
4

= P (H first and H second).

By Theorem 6.4, this means that the event “H second” is independent of the event“H first.” We
can make a similar computation for each possible combination of outcomes for the first and second
flip, and so we see that our definition of independence captures our intuitive idea of independence
in this case. Clearly the same sort of computation applies to rolling dice as well.

Exercise 6.3-5 What sample space and probabilities have we been using when discussing
hashing? Using these, show that the event “key i hashes to position p” and the event
“key j hashes to position q” are independent when i �= j. Are they independent if
i = j?

In Exercise 6.3-5 if we have a list of n keys to hash into a table of size k, our sample space
consists of all n-tuples of numbers between 1 and k. The event that key i hashes to some number

p consists of all n-tuples with p in the ith position, so its probability is
(

1
k

)n−1
/

(
1
k

)n
= 1

k . The

probability that key j hashes to some number q is also 1
k . If i �= j, then the event that key i

hashes to p and key j hashes to q has probability
(

1
k

)n−2
/

(
1
k

)n
=

(
1
k

)2
, which is the product of

the probabilities that key i hashes to p and key j hashes to q, so these two events are independent.
However if i = j the probability of key i hashing to p and key j hashing to q is zero unless p = q,
in which case it is 1. Thus if i = j, these events are not independent.
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Independent Trials Processes

Coin flipping and hashing are examples of what are called “independent trials processes.” Suppose
we have a process that occurs in stages. (For example, we might flip a coin n times.) Let us use
xi to denote the outcome at stage i. (For flipping a coin n times, xi = H means that the outcome
of the ith flip is a head.) We let Si stand for the set of possible outcomes of stage i. (Thus if
we flip a coin n times, Si = {H, T}.) A process that occurs in stages is called an independent
trials process if for each sequence a1, a2, . . . , an with ai ∈ Si,

P (xi = ai|x1 = a1, . . . , xi−1 = ai−1) = P (xi = ai).

In other words, if we let Ei be the event that xi = ai, then

P (Ei|E1 ∩ E2 ∩ · · · ∩ Ei−1) = P (Ei).

By our product principle for independent probabilities, this implies that

P (E1 ∩ E2 ∩ · · ·Ei−1 ∩ Ei) = P (E1 ∩ E2 ∩ · · ·Ei−1)P (Ei). (6.16)

Theorem 6.6 In an independent trials process the probability of a sequence a1, a2, . . . , an of
outcomes is P ({a1})P ({a2}) · · ·P ({an}).

Proof: We apply mathematical induction and Equation 6.16.

How do independent trials relate to coin flipping? Here our sample space consists of sequences
of n Hs and T s, and the event that we have an H (or T ) on the ith flip is independent of the
event that we have an H (or T ) on each of the first i−1 flips. In particular, the probability of an
H on the ith flip is 2n−1/2n = .5, and the probability of an H on the ith flip, given a particular
sequence on the first i − 1 flips is 2n−i−1/2n−i = .5.

How do independent trials relate to hashing a list of keys? As in Exercise 6.3-5 if we have a
list of n keys to hash into a table of size k, our sample space consists of all n-tuples of numbers
between 1 and k. The probability that key i hashes to p and keys 1 through i − 1 hash to q1,

q2,. . . qi−1 is
(

1
k

)n−i
/

(
1
k

)n
and the probability that keys 1 through i − 1 hash to q1, q2,. . . qi−1

is
(

1
k

)n−i+1
/

(
1
k

)n
. Therefore

P (key i hashes to p|keys 1 through i − 1 hash to q1, q2,. . . qi−1) =

(
1
k

)n−i
/

(
1
k

)n

(
1
k

)n−i+1
/

(
1
k

)n =
1
k
.

Therefore, the event that key i hashes to some number p is independent of the event that the first
i − 1 keys hash to some numbers q1, q2,. . . qi−1. Thus our model of hashing is an independent
trials process.

Exercise 6.3-6 Suppose we draw a card from a standard deck of 52 cards, replace it,
draw another card, and continue for a total of ten draws. Is this an independent
trials process?

Exercise 6.3-7 Suppose we draw a card from a standard deck of 52 cards, discard it (i.e.
we do not replace it), draw another card and continue for a total of ten draws. Is this
an independent trials process?
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In Exercise 6.3-6 we have an independent trials process, because the probability that we
draw a given card at one stage does not depend on what cards we have drawn in earlier stages.
However, in Exercise 6.3-7, we don’t have an independent trials process. In the first draw, we
have 52 cards to draw from, while in the second draw we have 51. In particular, we do not have
the same cards to draw from on the second draw as the first, so the probabilities for each possible
outcome on the second draw depend on whether that outcome was the result of the first draw.

Tree diagrams

When we have a sample space that consists of sequences of outcomes, it is often helpful to visualize
the outcomes by a tree diagram. We will explain what we mean by giving a tree diagram of the
following experiment. We have one nickel, two dimes, and two quarters in a cup. We draw a first
and second coin. In Figure 6.3 you see our diagram for this process. Notice that in probability
theory it is standard to have trees open to the right, rather than opening up or down.

Figure 6.5: A tree diagram illustrating a two-stage process.
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Each level of the tree corresponds to one stage of the process of generating a sequence in our
sample space. Each vertex is labeled by one of the possible outcomes at the stage it represents.
Each edge is labeled with a conditional probability, the probability of getting the outcome at
its right end given the sequence of outcomes that have occurred so far. Since no outcomes
have occurred at stage 0, we label the edges from the root to the first stage vertices with the
probabilities of the outcomes at the first stage. Each path from the root to the far right of the
tree represents a possible sequence of outcomes of our process. We label each leaf node with the
probability of the sequence that corresponds to the path from the root to that node. By the
definition of conditional probabilities, the probability of a path is the product of the probabilities
along its edges. We draw a probability tree for any (finite) sequence of successive trials in this
way.

Sometimes a probability tree provides a very effective way of answering questions about a
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process. For example, what is the probability of having a nickel in our coin experiment? We see
there are four paths containing an N , and the sum of their weights is .4, so the probability that
one of our two coins is a nickel is .4.

Exercise 6.3-8 How can we recognize from a probability tree whether it is the probability
tree of an independent trials process?

Exercise 6.3-9 In Exercise 6.3-4 we asked (among other things), if a student knows 80% of
the material in a a course, what is the probability that she answers a question correctly
on a 100 question True-False test (assuming that she guesses on any question she does
not know the answer to)? (We assume that she knows what she knows, that is, if
she thinks that she knows the answer, then she really does.) Show how we can use a
probability tree to answer this question.

Exercise 6.3-10 A test for a disease that affects 0.1% of the population is 99% effective on
people with the disease (that is, it says they have it with probability 0.99). The test
gives a false reading (saying that a person who does not have the disease is affected
with it) for 2% of the population without the disease. We can think of choosing
someone and testing them for the disease as a two stage process. In stage 1, we either
choose someone with the disease or we don’t. In stage two, the test is either positive
or it isn’t. Give a probability tree for this process. What is the probability that
someone selected at random and given a test for the disease will have a positive test?
What is the probability that someone who has positive test results in fact has the
disease?

A tree for an independent trials process has the property that at each level, for each node
at that level, the (labeled) tree consisting of that node and all its children is identical to each
labeled tree consisting of another node at that level and all its children. If we have such a tree,
then it automatically satisfies the definition of an independent trials process.

In Exercise 6.3-9, if a student knows 80% of the material in a course, we expect that she has
probability .8 of knowing the answer to any given question of a well-designed true-false test. We
regard her work on a question as a two stage process; in stage 1 she determines whether she
knows the answer, and in stage 2, she either answers correctly with probability 1, or she guesses,
in which case she answers correctly with probability 1/2 and incorrectly with probability 1/2.
Then as we see in Figure 6.3 there are two root-leaf paths corresponding to her getting a correct
answer. One of these paths has probability .8 and the other has probability .1. Thus she actually
has probability .9 of getting a right answer if she guesses at each question she does not know the
answer to.

In Figure 6.3 we show the tree diagram for thinking of Exercise 6.3-10 as a two stage process.
In the first stage, a person either has or doesn’t have the disease. In the second stage we
administer the test, and its result is either positive or not. We use D to stand for having the
disease and ND to stand for not having the disease. We use “pos” to stand for a positive test
and “neg” to stand for a negative test, and assume a test is either positive or negative. The
question asks us for the conditional probability that someone has the disease, given that they
test positive. This is

P (D|pos) =
P (D ∩ pos)

P (pos)
.
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Figure 6.6: The probability of getting a right answer is .9.
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Figure 6.7: A tree diagram illustrating Exercise 6.3-10.
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From the tree, we read that P (D∩pos) = .00099 because this event consists of just one root-leaf
paths. The event “pos” consists of two root-leaf paths whose probabilities total .0198+ .00099 =
.02097. Thus P (D|pos) = P (D ∩ pos)/P (pos) = .00099/.02097 = .0472. Thus, given a disease
this rare and a test with this error rate, a positive result only gives you roughly a 5% chance of
having the disease! Here is another instance where a probability analysis shows something we
might not have expected initially. This explains why doctors often don’t want to administer a
test to someone unless that person is already showing some symptoms of the disease being tested
for.

We can also do Exercise 6.3-10 purely algebraically. We are given that

P (disease) = .001, (6.17)
P (positive test result|disease) = .99, (6.18)

P (positive test result|no disease) = .02. (6.19)

We wish to compute

P (disease|positive test result).
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We use Equation 6.14 to write that

P (disease|positive test result) =
P (disease ∩ positive test result)

P (positive test result)
. (6.20)

How do we compute the numerator? Using the fact that P (disease ∩ positive test result) =
P (positive test result ∩ disease) and Equation 6.14 again, we can write

P (positive test result|disease) =
P (positive test result ∩ disease)

P (disease)
.

Plugging Equations 6.18 and 6.17 into this equation, we get

.99 =
P (positive test result ∩ disease)

.001

or P (positive test result ∩ disease) = (.001)(.99) = .00099.

To compute the denominator of Equation 6.20, we observe that since each person either has
the disease or doesn’t, we can write

P (positive test) = P (positive test ∩ disease) + P (positive test ∩ no disease). (6.21)

We have already computed P (positive test result∩disease), and we can compute the probability
P (positive test result ∩ no disease) in a similar manner. Writing

P (positive test result|no disease) =
P (positive test result ∩ no disease)

P (no disease)
,

observing that P (no disease) = 1 − P (disease) and plugging in the values from Equations 6.17
and 6.19, we get that P (positive test result∩no disease) = (.02)(1− .001) = .01998 We now have
the two components of the right hand side of Equation 6.21 and thus P (positive test result) =
.00099 + .01998 = .02097. Finally, we have all the pieces in Equation 6.20, and conclude that

P (disease|positive test result) =
P (disease ∩ positive test result)

P (positive test result)
=

.00099

.02097
= .0472.

Clearly, using the tree diagram mirrors these computations, but it both simplifies the thought
process and reduces the amount we have to write.

Important Concepts, Formulas, and Theorems

1. Conditional Probability. We define the conditional probability of E given F , denoted by
P (E|F ) and read as “the probability of E given F” by

P (E|F ) =
P (E ∩ F )

P (F )
.

2. Independent. We say E is independent of F if P (E|F ) = P (E).

3. Product Principle for Independent Probabilities. The product principle for independent
probabilities (Theorem 6.4) gives another test for independence. Suppose E and F are
events in a sample space. Then E is independent of F if and only if P (E∩F ) = P (E)P (F ).
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4. Symmetry of Independence. The event E is independent of the event F if and only if F is
independent of E.

5. Independent Trials Process. A process that occurs in stages is called an independent trials
process if for each sequence a1, a2, . . . , an with ai ∈ Si,

P (xi = ai|x1 = a1, . . . , xi−1 = ai−1) = P (xi = ai).

6. Probabilities of Outcomes in Independent Trials. In an independent trials process the prob-
ability of a sequence a1, a2, . . . , an of outcomes is P ({a1})P ({a2}) · · ·P ({an}).

7. Coin Flipping. Repeatedly flipping a coin is an independent trials process.

8. Hashing. Hashing a list of n keys into k slots is an independent trials process with n stages.

9. Probability Tree. In a probability tree for a multistage process, each level of the tree
corresponds to one stage of the process. Each vertex is labeled by one of the possible
outcomes at the stage it represents. Each edge is labeled with a conditional probability,
the probability of getting the outcome at its right end given the sequence of outcomes that
have occurred so far. Each path from the root to a leaf represents a sequence of outcomes
and is labelled with the product of the probabilities along that path. This is the probability
of that sequence of outcomes.

Problems

1. In three flips of a coin, what is the probability that two flips in a row are heads, given that
there is an even number of heads?

2. In three flips of a coin, is the event that two flips in a row are heads independent of the
event that there is an even number of heads?

3. In three flips of a coin, is the event that we have at most one tail independent of the event
that not all flips are identical?

4. What is the sample space that we use for rolling two dice, a first one and then a second one?
Using this sample space, explain why it is that if we roll two dice, the event “i dots are on
top of the first die” and the event “j dots are on top of the second die” are independent.

5. If we flip a coin twice, is the event of having an odd number of heads independent of the
event that the first flip comes up heads? Is it independent of the event that the second flip
comes up heads? Would you say that the three events are mutually independent? (This
hasn’t been defined, so the question is one of opinion. However you should back up your
opinion with a reason that makes sense!)

6. Assume that on a true-false test, students will answer correctly any question on a subject
they know. Assume students guess at answers they do not know. For students who know
60% of the material in a course, what is the probability that they will answer a question
correctly? What is the probability that they will know the answer to a question they answer
correctly?
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7. A nickel, two dimes, and two quarters are in a cup. We draw three coins, one at a time,
without replacement. Draw the probability tree which represents the process. Use the tree
to determine the probability of getting a nickel on the last draw. Use the tree to determine
the probability that the first coin is a quarter, given that the last coin is a quarter.

8. Write down a formula for the probability that a bridge hand (which is 13 cards, chosen
from an ordinary deck) has four aces, given that it has one ace. Write down a formula for
the probability that a bridge hand has four aces, given that it has the ace of spades. Which
of these probabilities is larger?

9. A nickel, two dimes, and three quarters are in a cup. We draw three coins, one at a time
without replacement. What is the probability that the first coin is a nickel? What is the
probability that the second coin is a nickel? What is the probability that the third coin is
a nickel?

10. If a student knows 75% of the material in a course, and a 100 question multiple choice test
with five choices per question covers the material in a balanced way, what is the student’s
probability of getting a right answer to a given question, given that the student guesses at
the answer to each question whose answer he or she does not know?

11. Suppose E and F are events with E ∩F = ∅. Describe when E and F are independent and
explain why.

12. What is the probability that in a family consisting of a mother, father and two children of
different ages, that the family has two girls, given that one of the children is a girl? What
is the probability that the children are both boys, given that the older child is a boy?


