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6.2 Unions and Intersections

The probability of a union of events

Exercise 6.2-1 If you roll two dice, what is the probability of an even sum or a sum of 8
or more?

Exercise 6.2-2 In Exercise 6.2-1, let E be the event “even sum” and let F be the event
“8 or more.” We found the probability of the union of the events E and F. Why isn’t
it the case that P (E ∪ F ) = P (E) + P (F )? What weights appear twice in the sum
P (E) + P (F )? Find a formula for P (E ∪ F ) in terms of the probabilities of E, F ,
and E ∩F . Apply this formula to Exercise 6.2-1. What is the value of expressing one
probability in terms of three?

Exercise 6.2-3 What is P (E ∪F ∪G) in terms of probabilities of the events E, F , and G
and their intersections?

In the sum P (E) + P (F ) the weights of elements of E ∩ F each appear twice, while the
weights of all other elements of E ∪F each appear once. We can see this by looking at a diagram
called a Venn Diagram, as in Figure 6.1. In a Venn diagram, the rectangle represents the sample
space, and the circles represent the events. If we were to shade both E and F , we would wind

Figure 6.1: A Venn diagram for two events.

E E ∩ F F

up shading the region E ∩ F twice. In Figure 6.2, we represent that by putting numbers in the
regions, representing how many times they are shaded. This illustrates why the sum P (E)+P (F )
includes the probability weight of each element of E ∩ F twice. Thus to get a sum that includes
the probability weight of each element of E ∪ F exactly once, we have to subtract the weight of
E ∪ F from the sum P (E) + P (F ). This is why

P (E ∪ F ) = P (E) + P (F ) − P (E ∩ F ) (6.3)

We can now apply this to Exercise 6.2-1 by noting that the probability of an even sum is 1/2,
while the probability of a sum of 8 or more is
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Figure 6.2: If we shade each of E and F once, then we shade E ∩ F twice

E E ∩ F F

1 2 1

From a similar sum, the probability of an even sum of 8 or more is 9/36, so the probability of a
sum that is even or is 8 or more is
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(In this case our computation merely illustrates the formula; with less work one could add the
probability of an even sum to the probability of a sum of 9 or 11.) In many cases, however,
probabilities of individual events and their intersections are more straightforward to compute
than probabilities of unions (we will see such examples later in this section), and in such cases
our formula is quite useful.

Now let’s consider the case for three events and draw a Venn diagram and fill in the numbers
for shading all E, F , and G. So as not to crowd the figure we use EF to label the region
corresponding to E ∩ F , and similarly label other regions. Doing so we get Figure 6.3. Thus we

Figure 6.3: The number of ways the intersections are shaded when we shade E, F , and G.
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have to figure out a way to subtract from P (E) + P (F ) + P (G) the weights of elements in the
regions labeled EF , FG and EG once, and the the weight of elements in the region labeled EFG
twice. If we subtract out the weights of elements of each of E ∩ F , F ∩ G, and E ∩ G, this does
more than we wanted to do, as we subtract the weights of elements in EF , FG and EG once
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but the weights of elements in of EFG three times, leaving us with Figure 6.4. We then see that

Figure 6.4: The result of removing the weights of each intersection of two sets.
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all that is left to do is to add weights of elements in the E ∩ F ∩ G back into our sum. Thus we
have that

P (E ∪ F ∪ G) = P (E) + P (F ) + P (G) − P (E ∩ F ) − P (E ∩ G) − P (F ∩ G) + P (E ∩ F ∩ G).

Principle of inclusion and exclusion for probability

From the last two exercises, it is natural to guess the formula

P (
n⋃

i=1

Ei) =
n∑

i=1

P (Ei) −
n−1∑

i=1

n∑

j=i+1

P (Ei ∩ Ej) +
n−2∑

i=1

n−1∑

j=i+1

n∑

k=j+1

P (Ei ∩ Ej ∩ Ek) − . . . . (6.4)

All the sum signs in this notation suggest that we need some new notation to describe sums.
We are now going to make a (hopefully small) leap of abstraction in our notation and introduce
notation capable of compactly describing the sum described in the previous paragraph. We use

∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · ·Eik) (6.5)

to stand for the sum, over all sequences i1, i2, . . . ik of integers between 1 and n of the probabil-
ities of the sets Ei1 ∩ Ei2 . . . ∩ Eik . More generally,

∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

f(i1, i2, . . . , ik) is the sum of

f(i1, i2, . . . , ik) over all increasing sequences of k numbers between 1 and n.

Exercise 6.2-4 To practice with notation, what is
∑

i1,i2,i3:
1≤i1<i2<i3≤4

i1 + i2 + i3?
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The sum in Exercise 6.2-4 is 1+2+3+1+2+4+1+3+4+2+3+4 = 3(1+2+3+4) = 30.

With this understanding of the notation in hand, we can now write down a formula that
captures the idea in Equation 6.4 more concisely. Notice that in Equation 6.4 we include prob-
abilities of single sets with a plus sign, probabilities of intersections of two sets with a minus
sign, and in general, probabilities of intersections of any even number of sets with a minus sign
and probabilities of intersections of any odd number of sets (including the odd number one) with
a plus sign. Thus if we are intersecting k sets, the proper coefficient for the probability of the
intersection of these sets is (−1)k+1 (it would be equally good to use (−1)k−1, and correct but
silly to use (−1)k+3). This lets us translate the formula of Equation 6.4 to Equation 6.6 in the
theorem, called the Principle of Inclusion and Exclusion for Probability, that follows. We will
give two completely different proofs of the theorem, one of which is a nice counting argument but
is a bit on the abstract side, and one of which is straightforward induction, but is complicated
by the fact that it takes a lot of notation to say what is going on.

Theorem 6.3 (Principle of Inclusion and Exclusion for Probability) The probability of
the union E1 ∪ E2 ∪ · · · ∪ En of events in a sample space S is given by

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) . (6.6)

First Proof: Consider an element x of
⋃n

i=1 Ei. Let Ei1 , Ei2 , . . . Eik be the set of all events
Ei of which x is a member. Let K = {i1, i2, . . . , ik}. Then x is in the event Ej1 ∩Ej2 ∩ · · · ∩Ejm

if and only if {j1, j2 . . . jm} ⊆ K. Why is this? If there is a jr that is not in K, then x �∈ Ej and
thus x �∈ Ej1 ∩ Ej2 ∩ · · · ∩ Ejm . Notice that every x in

⋃n
i=1 Ei is in at least one Ei, so it is in at

least one of the sets Ei1 ∩ Ei2 ∩ · · · ∩ Eik .

Recall that we define P (Ej1 ∩ Ej2 ∩ · · · ∩ Ejm) to be the sum of the probability weights
p(x) for x ∈ Ej1 ∩ Ej2 ∩ · · · ∩ Ejm . Suppose we substitute this sum of probability weights
for P (Ej1 ∩ Ej2 ∩ · · · ∩ Ejm) on the right hand side of Equation 6.6. Then the right hand side
becomes a sum of terms each of with is plus or minus a probability weight. The sum of all the
terms involving p(x) on the right hand side of Equation 6.6 includes a term involving p(x) for
each nonempty subset {j1, j2, . . . , jm} of K, and no other terms involving p(x). The coefficient
of the probability weight p(x) in the term for the subset {j1, j2, . . . , jm} is (−1)m+1. Since there
are

( k
m

)
subsets of K of size m, the sum of the terms involving p(x) will therefore be

k∑

m=1

(−1)m+1

(
k

m

)
p(x) =

(
−

k∑

m=0

(−1)m

(
k

m

)
p(x)

)
+ p(x) = 0 · p(x) + p(x) = p(x),

because k ≥ 1 and thus by the binomial theorem,
∑k

j=0

(k
j

)
(−1)j = (1 − 1)k = 0. This proves

that for each x, the sum of all the terms involving p(x) after we substitute the sum of probability
weights into Equation 6.6 is exactly p(x). We noted above that for every x in ∪n

i=1Ei appears in
at least one of the sets Ei1 ∩Ei2 ∩ · · · ∩Eik . Thus the right hand side of Equation 6.6 is the sum
of every p(x) such that x is in ∪n

i=1Ei. By definition, this is the left-hand side of Equation 6.6.

Second Proof: The proof is simply an application of mathematical induction using Equation
6.3. When n = 1 the formula is true because it says P (E1) = P (E1). Now suppose inductively
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that for any family of n − 1 sets F1, F2, . . . , Fn−1

P

(
n−1⋃

i=1

Fi

)
=

n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Fi1 ∩ Fi2 ∩ Fik) (6.7)

If in Equation 6.3 we let E = E1 ∪ . . . ∪ En−1 and F = Em, we may apply Equation 6.3 to to
compute P (∪n

i=1Ei) as follows:

P

(
n⋃

i=1

Ei

)
= P

(
n−1⋃

i=1

Ei

)
+ P (En) − P

((
n−1⋃

i=1

Ei

)
∩ En

)
. (6.8)

By the distributive law, (
n−1⋃

i=1

Ei

)
∩ En =

n−1⋃

i=1

(Ei ∩ En) ,

and substituting this into Equation 6.8 gives

P

(
n⋃

i=1

Ei

)
= P

(
n−1⋃

i=1

Ei

)
+ P (En) − P

(
n−1⋃

i=1

(Ei ∩ En)

)
.

Now we use the inductive hypothesis (Equation 6.7) in two places to get

P

(
n⋃

i=1

Ei

)
=

n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) (6.9)

+ P (En)

−
n−1∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n−1

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik ∩ En).

The first summation on the right hand side sums (−1)k+1P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) over all lists
i1, i2, . . . , ik that do not contain n, while the P (En) and the second summation work together to
sum (−1)k+1P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) over all lists i1, i2, . . . , ik that do contain n. Therefore,

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,i...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik).

Thus by the principle of mathematical induction, this formula holds for all integers n > 0.

Exercise 6.2-5 At a fancy restaurant n students check their backpacks. They are the only
ones to check backpacks. A child visits the checkroom and plays with the check tickets
for the backpacks so they are all mixed up. If there are 5 students named Judy, Sam,
Pat, Jill, and Jo, in how many ways may the backpacks be returned so that Judy gets
her own backpack (and maybe some other students do, too)? What is the probability
that this happens? What is the probability that Sam gets his backpack (and maybe
some other students do, too)? What is the probability that Judy and Sam both get
their own backpacks (and maybe some other students do, too)? For any particular
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two element set of students, what is the probability that these two students get their
own backpacks (and maybe some other students do, too)? What is the probability
that at least one student gets his or her own backpack? What is the probability that
no students get their own backpacks? What do you expect the answer will be for
the last two questions for n students? This classic problem is often stated using hats
rather than backpacks (quaint, isn’t it?), so it is called the hatcheck problem. It is
also known as the derangement problem; a derangement of a set being a one-to-one
function from a set onto itself (i.e., a bijection) that sends each element to something
not equal to it.

For Exercise 6.2-5, let Ei be the event that person i on our list gets the right backpack. Thus
E1 is the event that Judy gets the correct backpack and E2 is the event that Sam gets the correct
backpack. The event E1∩E2 is the event that Judy and Sam get the correct backpacks (and maybe
some other people do). In Exercise 6.2-5, there are 4! ways to pass back the backpacks so that
Judy gets her own, as there are for Sam or any other single student. Thus P (E1) = P (Ei) = 4!

5! .
For any particular two element subset, such as Judy and Sam, there are 3! ways that these two
people may get their backpacks back. Thus, for each i and j, P (Ei ∩ Ej) = 3!

5! . For a particular
k students the probability that each one of these k students gets his or her own backpack back
is (5 − k)!/5!. If Ei is the event that student i gets his or her own backpack back, then the
probability of an intersection of k of these events is (5 − k)!/5! The probability that at least one
person gets his or her own backpack back is the probability of E1 ∪E2 ∪E3 ∪E4 ∪E5. Then by
the principle of inclusion and exclusion, the probability that at least one person gets his or her
own backpack back is

P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
5∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤5

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik). (6.10)

As we argued above, for a set of k people, the probability that all k people get their backpacks
back is (5 − k)!/5!. In symbols, P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) = (5−k)!

5! . Recall that there are
(5
k

)

sets of k people chosen from our five students. That is, there are
(5
k

)
lists i1, i2, . . . ik with

1 < i1 < i2 < · · · < ik ≤ 5. Thus, we can rewrite the right hand side of the Equation 6.10 as

5∑

k=1

(−1)k+1

(
5
k

)
(5 − k)!

5!
.

This gives us

P (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) =
5∑

k=1

(−1)k−1

(
5
k

)
(5 − k)!

5!

=
5∑

k=1

(−1)k−1 5!
k!(5 − k)!

(5 − k)!
5!

=
5∑

k=1

(−1)k−1 1
k!

= 1 − 1
2

+
1
3!

− 1
4!

+
1
5!

.
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The probability that nobody gets his or her own backpack is 1 minus the probability that
someone does, or

1
2
− 1

3!
+

1
4!

− 1
5!

To do the general case of n students, we simply substitute n for 5 and get that the probability
that at least one person gets his or her own backpack is

n∑

i=1

(−1)i−1 1
i!

= 1 − 1
2

+
1
3!

− · · · + (−1)n−1

n!

and the probability that nobody gets his or her own backpack is 1 minus the probability above,
or

n∑

i=2

(−1)i 1
i!

=
1
2
− 1

3!
+ · · · + (−1)n

n!
(6.11)

Those who have had power series in calculus may recall the power series representation of ex,
namely

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · =

∞∑

i=0

xi

i!
.

Thus the expression in Equation 6.11 is the approximation to e−1 we get by substituting −1
for x in the power series and stopping the series at i = n. Note that the result depends very
“lightly” on n; so long as we have at least four or five people, no matter how many people we
have, the probability that no one gets their hat back remains at roughly e−1. Our intuition might
have suggested that as the number of students increases, the probability that someone gets his
or her own backpack back approaches 1 rather than 1 − e−1. Here is another example of why it
is important to use computations with the rules of probability instead of intuition!

The Principle of Inclusion and Exclusion for Counting

Exercise 6.2-6 How many functions are there from an n-element set N to a k-element set
K = {y1, y2, . . . yk} that map nothing to y1? Another way to say this is if I have n
distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I pass out
the candy bars so that Sam doesn’t get any candy (and maybe some other children
don’t either)?

Exercise 6.2-7 How many functions map nothing to a j-element subset J of K? Another
way to say this is if I have n distinct candy bars and k children Sam, Mary, Pat, etc.,
in how ways may I pass out the candy bars so that some particular j-element subset
of the children don’t get any (and maybe some other children don’t either)?

Exercise 6.2-8 What is the number of functions from an n-element set N to a k element
set K that map nothing to at least one element of K? Another way to say this is if
I have n distinct candy bars and k children Sam, Mary, Pat, etc., in how ways may I
pass out the candy bars so that some child doesn’t get any (and maybe some other
children don’t either)?

Exercise 6.2-9 On the basis of the previous exercises, how many functions are there from
an n-element set onto a k element set?
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The number of functions from an n-element set to a k-element set K = {y1, y2, . . . yk} that
map nothing to y1 is simply (k − 1)n because we have k − 1 choices of where to map each of our
n elements. Similarly the number that map nothing to a particular set J of j elements will be
(k − j)n. This warms us up for Exercise 6.2-8.

In Exercise 6.2-8 we need an analog of the principle of inclusion and exclusion for the size of
a union of k sets (set i being the set of functions that map nothing to element i of the set K).
Because we can make the same argument about the size of the union of two or three sets that
we made about probabilities of unions of two or three sets, we have a very natural analog. That
analog is the Principle of Inclusion and Exclusion for Counting

∣∣∣∣∣

n⋃

i=1

Ei

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | . (6.12)

In fact, this formula is proved by induction or a counting argument in virtually the same way.
Applying this formula to the number of functions from N that map nothing to at least one
element of K gives us

|
k⋃

i=1

Ei| =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | =
k∑

j=1

(−1)j−1

(
k

j

)
(k − j)n.

This is the number of functions from N that map nothing to at least one element of K. The
total number of functions from N to K is kn. Thus the number of onto functions is

kn −
k∑

j=1

(−1)j−1

(
k

j

)
(k − j)n =

k∑

j=0

(−1)j

(
k

j

)
(k − j)n,

where the second equality results because
(k
0

)
is 1 and (k − 0)n is kn.

Important Concepts, Formulas, and Theorems

1. Venn diagram. To draw a Venn diagram, for two or three sets, we draw a rectangle that
represents the sample space, and two or three mutually overlapping circles to represent the
events.

2. Probability of a union of two events. P (E ∪ F ) = P (E) + P (F ) − P (E ∩ F )

3. Probability of a union of three events. P (E ∪F ∪G) = P (E) + P (F ) + P (G)−P (E ∩F )−
P (E ∩ G) − P (F ∩ G) + P (E ∩ F ∩ G).

4. A summation notation.
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

f(i1, i2, . . . , ik) is the sum of f(i1, i2, . . . , ik) over all

increasing sequences of k numbers between 1 and n.

5. Principle of Inclusion and Exclusion for Probability. The probability of the union E1∪E2∪
· · · ∪ En of events in a sample space S is given by

P

(
n⋃

i=1

Ei

)
=

n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eik) .
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6. Hatcheck Problem. The hatcheck problem or derangement problem asks for the probability
that a bijection of an n element set maps no element to itself. The answer is

n∑

i=2

(−1)i 1
i!

=
1
2
− 1

3!
+ · · · + (−1)n

n!
,

the result of truncating the power series expansion of e−1 at the (−1)n

n! . Thus the result is
very close to 1

e , even for relatively small values of n.

7. Principle of Inclusion and Exclusion for Counting. The Principle of inclusion and exclusion
for counting says that

∣∣∣∣∣

n⋃

i=1

Ei

∣∣∣∣∣ =
n∑

k=1

(−1)k+1
∑

i1,i2,...,ik:

1≤i1<i2<···<ik≤n

|Ei1 ∩ Ei2 ∩ · · · ∩ Eik | .

Problems

1. Compute the probability that in three flips of a coin the coin comes heads on the first flip
or on the last flip.

2. The eight kings and queens are removed from a deck of cards and then two of these cards
are selected. What is the probability that the king or queen of spades is among the cards
selected?

3. Two dice are rolled. What is the probability that we see a die with six dots on top?

4. A bowl contains two red, two white and two blue balls. We remove two balls. What is the
probability that at least one is red or white? Compute the probability that at least one is
red.

5. From an ordinary deck of cards, we remove one card. What is the probability that it is an
Ace, is a diamond, or is black?

6. Give a formula for the probability of P (E∪F ∪G∪H) in terms of the probabilities of E,F ,
G, and H, and their intersections.

7. What is ∑

i1,i2,i3:
1≤i1<i2<i3≤4

i1i2i3 ?

8. What is ∑

i1,i2,i3:
1≤i1<i2<i3≤5

i1 + i2 + i3 ?

9. The boss asks the secretary to stuff n letters into envelopes forgetting to mention that he
has been adding notes to the letters and in the process has rearranged the letters but not
the envelopes. In how many ways can the letters be stuffed into the envelopes so that
nobody gets the letter intended for him or her? What is the probability that nobody gets
the letter intended for him or her?
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10. If we are hashing n keys into a hash table with k locations, what is the probability that
every location gets at least one key?

11. From the formula for the number of onto functions, find a formula for S(n, k) which is
defined in Problem 12 of Section 1.4. These numbers are called Stirling numbers (of the
second kind).

12. If we roll 8 dice, what is the probability that each of the numbers 1 through 6 appear on
top at least once? What about with 9 dice?

13. Explain why the number of ways of distributing k identical apples to n children is
(n+k−1

k

)
.

In how many ways may you distribute the apples to the children so that Sam gets more
than m? In how many ways may you distribute the apples to the children so that no child
gets more than m?

14. A group of n married couples sits a round a circular table for a group discussion of marital
problems. The counselor assigns each person to a seat at random. What is the probability
that no husband and wife are side by side?

15. Suppose we have a collection of m objects and a set P of p “properties,” an undefined term,
that the objects may or may not have. For each subset S of the set P of all properties,
define Na(S) (a is for “at least”) to be the number of objects in the collection that have at
least the properties in S. Thus, for example, Na(∅) = m. In a typical application, formulas
for Na(S) for other sets S ⊆ P are not difficult to figure out. Define Ne(S) to be the
number of objects in our collection that have exactly the properties in S. Show that

Ne(∅) =
∑

K:K⊆P

(−1)|K|Na(K).

Explain how this formula could be used for computing the number of onto functions in
a more direct way than we did it using unions of sets. How would this formula apply to
Problem 9 in this section?

16. In Problem 14 of this section we allow two people of the same sex to sit side by side. If we
require in addition to the condition that no husband and wife are side by side the condition
that no two people of the same sex are side by side, we obtain a famous problem known as
the mènage problem. Solve this problem.

17. In how many ways may we place n distinct books on j shelves so that shelf one gets at
least m books? (See Problem 7 in Section 1.4.) In how many ways may we place n distinct
books on j shelves so that no shelf gets more than m books?

18. In Problem 15 in this section, what is the probability that an object has none of the
properties, assuming all objects to be equally likely? How would this apply the Problem
6-10?


