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5.4 Recurrences and Selection

One common problem that arises in algorithms is that of selection. In this problem you are given
n distinct data items from some set which has an underlying order. That is, given any two items,
it makes sense to talk about one being smaller than another. Given these n items, and some
value i, 1 ≤ i ≤ n, you wish to find the ith smallest item in the set. For example in the set
{3, 1, 8, 6, 4, 11, 7}, the first smallest (i = 1) is 1, the third smallest (i = 3) is 4 and the seventh
smallest (i = n = 7) is 11. An important special case is that of finding the median, which is the
case of i = �n/2�. Another important special case is finding percentiles; for example the 90th
percentile is te case i = �.9n�. As this suggests, i is frequently given as some fraction of n.

Exercise 5.4-1 How do you find the minimum (i = 1) or maximum (i = n) in a set?
What is the running time? How do you find the second smallest? Does this approach
extend to finding the ith smallest? What is the running time?

Exercise 5.4-2 Give the fastest algorithm you can to find the median (i = �n/2�).

In Exercise 5.4-1, the simple O(n) algorithm of going through the list and keeping track of
the minimum value seen so far will suffice to find the minimum. Similarly, if we want to find the
second smallest, we can go through the list once, find the smallest, remove it and then find the
smallest in the new list. This also takes O(n + n − 1) = O(n) time. If we extend this to finding
the ith smallest, the algorithm will take O(in) time. Thus for finding the median, this method
takes O(n2) time.

A better idea for finding the median is to first sort the items, and then take the item in
position n/2. Since we can sort in O(n log n) time, this algorithm will take O(n log n) time. Thus
if i = O(log n) we might want to run the algorithm of the previous paragraph, and otherwise run
this algorithm.2

All these approaches, when applied to the median, take at least some multiple of (n log n)
units of time.3 As you know, the best sorting algorithms take O(n log n) time also. As you
may not know, there is actually a sense in which one can prove every comparison-based sorting
algorithm takes Ω(n log n) time This raises the natural question of whether it is possible to do
selection any faster than sorting. In other words, is the problem of finding the median element
of a set significantly easier than the problem of ordering (sorting) the whole set.

Recursive Selection Algorithm

Suppose for a minute that we magically knew how to find the median in O(n) time. That is, we
have a routine MagicMedian, that given as input a set A, returns the median. We could then
use this in a divide and conquer algorithm for Select as follows;

Select(A, i, n)
(selects the ith smallest element in set A, where n = |A|)

2We also note that the running time can be improved to O(n + i log n) by first creating a heap, which takes
O(n) time, and then performing a Delete-Min operation i times.

3An alternate notation for f(x) = O(g(x)) is g(x) = Ω(f(x)). Notice the change in roles of f and g. In this
notation, we say that all of these algorithms take Ω(n log n) time.
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(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMedian(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select(L, i, |L|)
(9) else
(10) Return Select(H, i − |L|, |H|)

By H we do not mean the elements that come after p in the list, but the elements of the
list which are larger than p in the underlying ordering of our set. This algorithm is based on
the following simple observation. If we could divide the set A up into a “lower half” (L) and an
“upper” half (H), then we know which of these two sets the ith smallest element in A will be
in. Namely, if i ≤ �n/2�, it will be in L, and otherwise it will be in H. Thus, we can recursively
look in one or the other set. We can easily partition the data into two sets by making two passes,
in the first we copy the numbers smaller than p into L, and in the second we copy the numbers
larger than p into H.4

The only additional detail is that if we look in H, then instead of looking for the ith smallest,
we look for the i − �n/2�th smallest, as H is formed by removing the �n/2� smallest elements
from A. We can express the running time by the following recurrence:

T (n) ≤ T (n/2) + cn (5.11)

From the master theorem, we know any function which satisfies this recurrence has T (n) = O(n).

So we can conclude that if we already know how to find the median in linear time, we can
design a divide and conquer algorithm that will solve the selection problem in linear time. This
is nothing to write home about (yet)!

Sometimes a knowledge of solving recurrences can help us design algorithms. First, let’s
consider what recurrences have only solutions T (n) with T (n) = O(n). In particular, consider
recurrences of the form T (n) ≤ T (n/b) + cn, and ask when they have solution T (n) = O(n).
Using the master theorem, we see that as long as logb 1 < 1 (and since logb 1 = 0 for any b,
this means than any b allowed by the master theorem works; that is, any b > 1 will work), all
solutions to this recurrence will have T (n) = O(n). (Note that b does not have to be an integer.)
Interpreting this as an abstract algorithm, and letting b′ = 1/b, this says that as long as we can
solve a problem of size n by first solving (recursively) a problem of size b′n, for any b′ < 1, and
then doing O(n) additional work, our algorithm will run in O(n) time. Interpreting this in the
selection problem, it says that as long as we can, in O(n) time, choose p to ensure that both L
and H have size at most b′n, we will have a linear time algorithm. In particular, suppose that,
in O(n) time, we can choose p to ensure that both L and H have size at most (3/4)n. Then we
will be able to solve the selection problem in linear time.

Now suppose instead of a MagicMedian box, we have a much weaker Magic Box, one which
only guarantees that it will return some number in the middle half of our set. That is, it will

4We can do this more efficiently, and “in place”, using the partition algorithm of quicksort.
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return a number that is guaranteed to be somewhere between the n/4th smallest number and
the 3n/4th smallest number. We will call this box a MagicMiddle box, and can use it in the
following algorithm:

Select1(A,i,n)
(selects the ith smallest element in set A, where n = |A| )
(1) if (n = 1)
(2) return the one item in A
(3) else
(4) p = MagicMiddle(A)
(5) Let H be the set of elements greater than p
(6) Let L be the set of elements less than or equal to p
(7) if (i ≤ |L|)
(8) Return Select1(L, i, |L|)
(9) else
(10) Return Select1(H, i − |L|, |H|)

The algorithm Select1 is similar to Select. The only difference is that p is now only guaranteed
to be in the middle half. Now, when we recurse, the decision of the set on which to recurse is
based on whether i is less than or equal to |L|. The element p is called a partition element,
because it is used to partition our set A into the two sets L and H.

This is progress, as we now don’t need to assume that we can find the median in order to
have a linear time algorithm, we only need to assume that we can find one number in the middle
half of the set. This seems like a much simpler problem, and in fact it is. Thus our knowledge of
which recurrences solve to O(n) led us towards a more plausible algorithm.

Unfortunately, we don’t know a straightforward way to even find an item in the middle half.
We will now describe a way to find it, however, in which we select a subset of the numbers and
then recursively find the median of that subset.

More precisely consider the following algorithm (in which we assume that |A| is a multiple of
5.)

MagicMiddle(A)
(1) Let n = |A|
(2) if (n < 60)
(3) return the median of A
(4) else
(5) Break A into k = n/5 groups of size 5, G1, . . . , Gk

(6) for i = 1 to k
(7) find mi, the median of Gi

(8) Let M = {m1, . . . , mk}
(9) return Select1 (M, �k/2�, k)

In this algorithm, we break A into n/5 sets of size 5, and then find the median of each set.
We then (using Select1 recursively) find the median of medians and return this as our p.
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Lemma 5.11 The value returned by MagicMiddle(A) is in the middle half of A.

Proof: Consider arranging the elements in the following manner. For each set of 5, list them
in sorted order, with the smallest element on top. Then line up all n/5 of these lists, ordered by
their medians, smallest on the left. We get the picture in Figure 5.9 In this picture, the medians

Figure 5.9: Dividing a set into n/5 parts of size 5, finding the median of each part and the median
of the medians.

are in white, the median of medians is cross-hatched, and we have put in all the inequalities that
we know from the ordering information that we have. Now, consider how many items are less
than or equal to the median of medians. Every smaller median is clearly less than the median
of medians and, in its 5 element set, the elements smaller than the median are also smaller than
the median of medians. Now in Figure 5.10 we circle a set of elements that is guaranteed to
be smaller than the median of medians. In one fewer than half the columns, we have circled 3
elements and in one column we have circled 2 elements. Therefore, we have circled at least5

(
1
2

(
n

5

)
− 1

)
3 + 2 =

3n

10
− 1

elements.

So far we have assumed n is an exact multiple of 5, but we will be using this idea in cir-
cumstances when it is not. If it is not an exact multiple of 5, we will have �n/5� columns (in
particular more than n/5 columns), but in one of them we might have only one element. It is
possible that column is one of the ones we counted on for 3 elements, so our estimate could be
two elements too large.6 Thus we have circled at least

3n

10
− 1 − 2 =

3n

10
− 3

5We say “at least” because our argument applies exactly when n is even, but underestimates the number of
circled elements when n is odd.

6A bit less than 2 because we have more than n/5 columns.
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Figure 5.10: The circled elements are less than the median of the medians.

elements. It is a straightforward argument with inequalities that as long as n ≥ 60, this quantity
is at least n/4. So if at least n/4 items are guaranteed to be less than the median, then at most
3n/4 items can be greater than the median, and hence |H| ≤ 3n/4.

We can make the same argument about larger elements. A set of elements that is guaranteed
to be larger than the median of medians is circled in the Figure 5.11: By the same argument as

Figure 5.11: The circled elements are greater than the median of the medians.

above, this shows that the size of L is at most 3n/4.

Note that we don’t actually identify all the nodes that are guaranteed to be, say, less than
the median of medians, we are just guaranteed that the proper number exists.

Since we only have the guarantee that MagicMiddle gives us an element in the middle half of
the set if the set has at least sixty elements, we modify Select1 to start out by checking to see if
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n < 60, and sorting the set to find the element in position i if n < 60. Since 60 is a constant,
this takes a constant amount of time.

Exercise 5.4-3 Let T (n) be the running time of Select1 on n items. What is the running
time of Magic Middle?

Exercise 5.4-4 What is a recurrence for the running time of Select1?

Exercise 5.4-5 Can you prove by induction that each solution to the recurrence for Select1
is O(n)?

The first step of MagicMiddle is to divide the items into sets of five; this takes O(n) time.
We then have to find the median of each set. There are n/5 sets and we spend no more than
some constant time per set, so the total time is O(n). Next we recursively call Select1 to find the
median of medians; this takes T (n/5) time. Finally, we do the partition of A into those elements
less than or equal to the “magic middle” and those that are not. This too takes O(n) time. Thus
the total running time is T (n/5) + O(n). This means that for some n0 there is a constant c0 > 0
such that the running time is no more than c0n. Now, even if n0 > 60, there are only finitely
many cases between 60 and n0 so there is a constant c such that for n ≥ 60, the running tme of
Magic Middle is no more than T (n/5) + cn.

Now Select1 has to call Magic Middle and then recurse on either L or H, each of which has
size at most 3n/4. Adding in a base case that it takes time no more than some constant d to
cover sets of size less than 60, we get the following recurrence for the running time of Select1:

T (n) ≤
{

T (3n/4) + T (n/5) + cn if n ≥ 60
d if n < 60.

(5.12)

We can now verify by induction that T (n) = O(n). What we want to prove is that there is a
constant k such that T (n) ≤ kn. What the recurrence tells us is that there are constants c and
d such that T (n) ≤ T (3n/4) + T (n/5) + cn if n ≥ 60, and otherwise T (n) ≤ d. For the base
case we have T (n) ≤ d ≤ dn for n < 60, so we choose k to be at least d and then T (n) ≤ kn for
n < 60. We now assume that n ≥ 60 and T (m) ≤ km for values m < n, and get

T (n) ≤ T (3n/4) + T (n/5) + cn

≤ 3kn/4 + 2kn/5 + cn

= 19/20kn + cn

= kn + (c − k/20)n .

As long as k ≥ 20c, this is at most kn; so we simply choose k this big and by the principle of
mathematical induction, we have T (n) < kn for all positive integers n.

Uneven Divisions

This kind of recurrence is actually an instance of a more general class which we will now explore.

Exercise 5.4-6 We already know that when g(n) = O(n), then every solution of T (n) =
T (n/2) + g(n) satisfies T (n) = O(n). Use the master theorem to find Big-O bounds
to all solutions of T (n) = T (cn) + g(n) for any constant c < 1, assuming that g(n) =
O(n).
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Exercise 5.4-7 Use the master theorem to find Big-O bounds to all solutions of T (n) =
2T (cn) + g(n) for any constant c < 1/2, assuming that g(n) = O(n).

Exercise 5.4-8 Suppose g(n) = O(n) and you have a recurrence of the form T (n) =
T (an) + T (bn) + g(n) for some constants a and b. What conditions on a and b
guarantee that all solutions to this recurrence have T (n) = O(n)?

Using the master theorem, for Exercise 5.4-6, we get T (n) = O(n), since log1/c 1 < 1. We
also get O(n) for Exercise 5.4-7, since log1/c 2 < 1 for c < 1/2. You might now guess that as long
as a + b < 1, any solution to the recurrence T (n) ≤ T (an) + T (bn) + cn has T (n) = O(n). We
will now see why this is the case.

First, let’s return to the recurrence we had, T (n) = T (3/4n)+T (n/5)+g(n), were g(n) = O(n)
and let’s try to draw a recursion tree. This doesn’t quite fit our model, as the two subproblems
are unequal (thus we can’t even write down the problem size on the left), but we will try to draw
it anyway and see what happens. As we draw levels one and two, we see that at the level one, we

Figure 5.12: Attempting a recursion tree for T (n) = T (3/4n) + T (n/5) + g(n).

n

3/4 n 1/5 n

(3/4)(1/5)n (1/5)(3/4)n (1/5)(1/5)n(3/4)(3/4)n

Work
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((3/4)(3/4)
+ (3/4)(1/5)
+(1/5)(3/4)
+(1/5)(1/5)) n

have (3/4+1/5)n work. At the level two we have ((3/4)2+2(3/4)(1/5)+(1/5)2)n work. Were we to
work out the third level we would see that we have ((3/4)3+3(3/4)2(1/5)+3(3/4)(1/5)2+(1/5)3)n.
Thus we can see a pattern emerging. At level one we have (3/4 + 1/5)n work. At level 2 we
have, by the binomial theorem, (3/4+1/5)2n work. At level 3 we have, by the binomial theorem,

(3/4 + 1/5)3n work. And thus at level i of the tree we have
(

3
4 + 1

5

)i
n =

(
19
20

)i
work. Thus

summing over all the levels, we get that the total amount of work is

O(log n)∑
i=0

(
19
20

)i

n ≤
(

1
1 − 19/20

)
n = 20n.

We have actually ignored one detail here. In contrast to a recursion tree in which all subproblems
at a level have equal size, the “bottom” of the tree is more complicated. Different branches of
the tree will reach 1 and terminate at different levels. For example, the branch that follows all
3/4’s will bottom out after log4/3 n levels, while the one that follows all 1/5’s will bottom out



5.4. RECURRENCES AND SELECTION 199

after log5 n levels. However, the analysis above overestimates the work, that is, it assumes that
nothing bottoms out until log20/19 n levels, and in fact, the upper bound we gave on the sum
“assumes” that the recurrence never bottoms out.

We see here something general happening. It seems as if to understand a recurrence of the
form T (n) = T (an) + T (bn) + g(n), with g(n) = O(n), we can study the simpler recurrence
T (n) = T ((a + b)n) + g(n) instead. This simplifies things (in particular, it lets us use the Master
Theorem) and allows us to analyze a larger class of recurrences. Turning to the median algorithm,
it tells us that the important thing that happened there was that the sizes of the two recursive
calls, namely 3/4n and n/5, summed to less than 1. As long as that is the case for an algorithm,
the algorithm will work in O(n) time.

Important Concepts, Formulas, and Theorems

1. Median. The median of a set (with an underlying order) of n elements is the element that
would be in position �n/2� if the set were sorted into a list in order.

2. Percentile. The pth percentile of a set (with an underlying order) is the element that would
be in position p

100n if the set were sorted into a list in order.

3. Selection. Given an n-element set with some underlying order, the problem of selection of
the ith smallest element is that of finding the element that would be in the ith position if
the set were sorted into a list in order. Note that often i is expressed as a fraction of n.

4. Partition Element. A partition element in an algorithm is an element of a set (with an
underlying order) which is used to divide the set into two parts, those that come before
or are equal to the element (in the underlying order), and the remaining elements. Notice
that the set as given to the algorithm is not necessarily (in fact not usually) given in the
underlying order.

5. Linear Time Algorithms. If the running time of an algorithm satisfies a recurrence of the
form T (n) ≤ T (an) + cn with 0 ≤ a < 1, or a recurrence of the form T (n) ≤ T (an) +
T (bn) + cn with a and b nonnegative and a + b < 1, then T (n) = O(n).

6. Finding a Good Partition Element. If a set (with an underlying order) has sixty or more
elements, then the procedure of breaking the set into pieces of size 5 (plus one leftover piece
if necessary), finding the median of each piece and the finding the median of the medians
gives an element guaranteed to be in the middle half of the set.

7. Selection algorithm. The Selection algorithm with a linear time running guarantee sorts a
set of size less than sixty to find the element in the ith position; otherwise it uses the median
of medians of five to find a partition element, uses that partition element to divide the set
into two pieces and looks for the appropriate element in the appropriate piece recursively.

Problems

1. In the MagicMiddle algorithm, suppose we broke our data up into n/3 sets of size 3. What
would the running time of Select1 be?
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2. In the MagicMiddle algorithm, suppose we broke our data up into n/7 sets of size 7. What
would the running time of Select1 be?

3. Let

T (n) =

{
T (n/3) + T (n/2) + n if n ≥ 6
1 otherwise,

and let

S(n) =

{
S(5n/6) + n if n ≥ 6
1 otherwise.

Draw recursion trees for T and S. What are the big-O bounds we get on solutions to the
recurrences? Use the recursion trees to argue that, for all n, T (n) ≤ S(n).

4. Find a (big-O) upper bound (the best you know how to get) on solutions to the recurrence
T (n) = T (n/3) + T (n/6) + T (n/4) + n.

5. Find a (big-O) upper bound (the best you know how to get) on solutions the recurrence
T (n) = T (n/4) + T (n/2) + n2.

6. Note that we have chosen the median of an n-element set to be the element in position
�n/2�. We have also chosen to put the median of the medians into the set L of algorithm
Select1. Show that this lets us prove that T (n) ≤ T (3n/4) + T (n/5) + cn for n ≥ 40 rather
than n ≥ 60. (You will need to analyze the case where �n/5� is even and the case where it
is odd separately.) Is 40 the least value possible?


