
182 CHAPTER 5. RECURSION AND RECURRENCES

5.3 More general kinds of recurrences

Recurrence Inequalities

The recurrences we have been working with are really idealized versions of what we know about
the problems we are working on. For example, in merge-sort on a list of n items, we say we
divide the list into two parts of equal size, sort each part, and then merge the two sorted parts.
The time it takes to do this is the time it takes to divide the list into two parts plus the time
it takes to sort each part, plus the time it takes to merge the two sorted lists. We don’t specify
how we are dividing the list, or how we are doing the merging. (We assume the sorting is done
by applying the same method to the smaller lists, unless they have size 1, in which case we do
nothing.) What we do know is that any sensible way of dividing the list into two parts takes no
more than some constant multiple of n time units (and might take no more than constant time if
we do it by leaving the list in place and manipulating pointers) and that any sensible algorithm
for merging two lists will take no more than some (other) constant multiple of n time units. Thus
we know that if T (n) is the amount of time it takes to apply merge sort to n data items, then
there is a constant c (the sum of the two constant multiples we mentioned) such that

T (n) ≤ 2T (n/2) + cn. (5.6)

Thus real world problems often lead us to recurrence inequalities rather than recurrence
equations. These are inequalities that state that T (n) is less than or equal to some expression
involving values of T (m) for m < n. (We could also include inequalities with a greater than
or equal to sign, but they do not arise in the applications we are studying.) A solution to a
recurrence inequality is a function T that satisfies the inequality. For simplicity we will expand
what we mean by the word recurrence to include either recurrence inequalities or recurrence
equations.

In Recurrence 5.6 we are implicitly assuming that T is defined only on positive integer values
and, since we said we divided the list into two equal parts each time, our analysis only makes
sense if we assume that n is a power of 2.

Note that there are actually infinitely many solutions to Recurrence 5.6. (For example for
any c′ < c, the unique solution to

T (n) =

{
2T (n/2) + c′n if n ≥ 2
k if n = 1

satisfies Inequality 5.6 for any constant k.) This idea of infinitely many solutions for a recurrence
inequality is analogous to the idea that x − 3 = 0 has one solution, but x − 3 ≤ 0 has infinitely
many solutions. Later in this section we shall see how to show that all the solutions to Recurrence
5.6 satisfy T (n) = O(n log2 n). In other words, no matter how we sensibly implement merge sort,
we have a O(n log2 n) time bound on how long the merge sort process takes.

Exercise 5.3-1 Carefully prove by induction that for any function T defined on the non-
negative powers of 2, if

T (n) ≤ 2T (n/2) + cn

for some constant c, then T (n) = O(n log n).

5.3. MORE GENERAL KINDS OF RECURRENCES 183

A Wrinkle with induction

We can analyze recurrence inequalities via a recursion tree. The process is virtually identical to
our previous use of recursion trees. We must, however, keep in mind that on each level, we are
really computing an upper bound on the work done on that level. We can also use a variant of the
method we used a few sections ago, guessing an upper bound and verifying by induction. We use
this method for the recurrence in Exercise 5.3-1. Here we wish to show that T (n) = O(n log n).
Using the definition of Big-O, we can see that we wish to show that T (n) ≤ kn log n for some
positive constant k (so long as n is larger than some value n0).

We are going to do something you may find rather curious. We will consider the possibility
that we have a value of k for which the inequality holds. Then in analyzing the consequences
of this possibility, we will discover that there are assumptions that we need to make about k in
order for such a k to exist. What we will really be doing is experimenting to see how we will
need to choose k to make an inductive proof work.

We are given that T (n) ≤ 2T (n/2) + cn for all positive integers n that are powers of 2. We
want to prove there is another positive real number k > 0 and an n0 > 0 such that for n > n0,
T (n) ≤ kn log n. We cannot expect to have the inequality T (n) ≤ kn log n hold for n = 1,
because log 1 = 0. To have T (2) ≤ k · 2 log 2 = k · 2, we must choose k ≥ T (2)

2 . This is the first
assumption we must make about k. Our inductive hypothesis will be that if n is a power of 2 and
m is a power of 2 with 2 < m < n then T (m) ≤ km log m. Then n/2 < n, and since n is a power
of 2 greater than 2, we have that n/2 ≥ 2, so (n/2) log n/2 ≥ 2. By the inductive hypothesis,
T (n/2) ≤ k(n/2) log n/2. But then

T (n) ≤ 2T (n/2) + cn ≤ 2k
n

2
log

n

2
+ cn (5.7)

= kn log
n

2
+ cn (5.8)

= kn log n − kn log 2 + cn (5.9)
= kn log n − kn + cn. (5.10)

This shows that we need to make another assumption about k, namely that −kn + cn ≤ 0,
or k ≥ c. Then if both our assumptions about k are satisfied, we will have T (n) < kn log n, and
we can conclude by the principle of mathematical induction that for all n > 1 (so our n0 is 2),
T (n) ≤ kn log n, so that T (n) = O(n log n).

A full inductive proof that T (n) = O(n log n) is actually embedded in the discussion above,
but since it might not appear to you to be a proof, below we will summarize our observations in
a more traditional looking proof. However you should be aware that some authors and teachers
prefer to write their proofs in a style that shows why we make the choices about k that we do,
and so you should learn how to to read discussions like the one above as proofs.

We want to show that if T (n) ≤ T (n/2) + cn, then T (n) = O(n log n). We are given a real
number c > 0 such that for T (n) ≤ 2T (n/2) + cn for all n > 1. Choose k to be larger than or
equal to T (2)

2 and c. Then
T (2) ≤ k · 2 log 2

because k ≥ T (n0)/2 and log 2 = 1. Now assume that n > 2 and assume that for m with
2 ≤ m < n, we have T (m) ≤ km log m. Since n is a power of 2, we have n ≥ 4, so that n/2 is an

184 CHAPTER 5. RECURSION AND RECURRENCES

m with 2 ≤ m < n. Thus, by the inductive hypothesis,

T

(
n

2

)
≤ k

n

2
log

n

2.

Then by the recurrence,

T (n) ≤ 2k
n

2
log

n

2
+ cn

= kn(log n − 1) + cn

= kn log n + cn − kn

≤ kn log n,

since k ≥ c. Thus by the principle of mathematical induction, T (n) ≤ kn log n for all n > 2, and
therefore T (n) = O(n log n).

There are three things to note about this proof. First without the preceding discussion, the
choice of k seems arbitrary. Second, without the preceeding discussion, the implicit choice of 2
for the n0 in the big-O statement also seems arbitrary. Third, the constant k is chosen in terms
of the previous constant c. Since c was given to us by the recurrence, it may be used in choosing
the constant we use to prove a Big-O statement about solutions to the recurrence.

Further Wrinkles in Induction Proofs

Exercise 5.3-2 Show by induction that any solution T (n) to the recurrence

T (n) ≤ T (n/3) + cn

with n restricted to integer powers of 3 has T (n) = O(n).

Exercise 5.3-3 Show by induction that any solution T (n) to the recurrence

T (n) ≤ 4T (n/2) + cn

with n restricted to integer powers of 2 has T (n) = O(n2).

In Exercise 5.3-2 we are given a constant c such that T (n) ≤ T (n/3) + cn if n > 1. Since
we want to show that T (n) = O(n), we want to find two more constants n0 and k such that
T (n) ≤ kn whenever n > n0.

We will choose n0 = 1 here. (This was not an arbitrary choice; it is based on observing that
T (1) ≤ kn is not an impossible condition to satisfy when n = 1.) In order to have T (n) ≤ kn for
n = 1, we must assume k ≥ T (1). Now assuming inductively that T (m) ≤ km when 1 ≤ m < n
we can write

T (n) ≤ T (n/3) + cn

≤ k(n/3) + cn

= kn +
(

c − 2k

3

)
n

Thus, as long as c − 2k
3 ≤ 0, i.e. k ≥ 3

2c, we may conclude by mathematical induction that
T (n) ≤ kn for all n ≥ 1. Again, the elements of an inductive proof are in the preceding

5.3. MORE GENERAL KINDS OF RECURRENCES 185

discussion. Again you should try to learn how to read the argument we just finished as a valid
inductive proof. However, we will now present something that looks more like an inductive proof.

We choose k to be the maximum of T (1) and 3c/2. To prove by induction that T (x) ≤ kx we
begin by observing that T (1) ≤ k · 1. Next we assume that n > 1 and assume inductively that
for m with 1 ≤ m < n we have T (m) ≤ km. Now we may write

T (n) ≤ T (n/3) + cn ≤ kn/3 + cn = kn + (c − 2k/3)n ≤ kn,

because we chose k to be at least as large as 3c/2, making c − 2k/3 negative or zero. Thus by
the principle of mathematical induction we have T (n) ≤ kn for all n ≥ 1 and so T (n) = O(n).

Now let’s analyze Exercise 5.3-3. We won’t dot all the i’s and cross all the t’s here because
there is only one major difference between this exercise and the previous one. We wish to prove
there are an n0 and a k such that T (n) ≤ kn2 for n > n0. Assuming that we have chosen k
so that the base case holds, we can bound T (n) inductively by assuming that T (m) ≤ km2 for
m < n and reasoning as follows:

T (n) ≤ 4T

(
n

2

)
+ cn

≤ 4

(
k

(
n

2

)2
)

+ cn

= 4

(
kn2

4

)
+ cn

= kn2 + cn.

To proceed as before, we would like to choose a value of k so that cn ≤ 0. But we see that
we have a problem because both c and n are always positive! What went wrong? We have a
statement that we know is true, and we have a proof method (induction) that worked nicely for
similar problems.

The problem is that, while the statement is true, it is too weak to be proved by induction. To
have a chance of making the inductive proof work, we will have to make an inductive hypothesis
that puts some sort of negative quantity, say a term like −kn, into the last line of our display
above. Let’s see if we can prove something that is actually stronger than we were originally trying
to prove, namely that for some positive constants k1 and k2, T (n) ≤ k1n

2−k2n. Now proceeding
as before, we get

T (n) ≤ 4T (n/2) + cn

≤ 4

(
k1

(
n

2

)2

− k2

(
n

2

))
+ cn

= 4

(
k1n

2

4
− k2

(
n

2

))
+ cn

= k1n
2 − 2k2n + cn

= k1n
2 − k2n + (c − k2)n.

Now we have to make (c − k2)n ≤ 0 for the last line to be at most k1n
2 − k2n, and so we just

choose k2 ≥ c (and greater than whatever we need in order to make a base case work). Since
T (n) ≤ k1n

2 − k2n for some constants k1 and k2, then T (n) = O(n2).

186 CHAPTER 5. RECURSION AND RECURRENCES

At first glance, this approach seems paradoxical: why is it easier to prove a stronger statement
than it is to prove a weaker one? This phenomenon happens often in mathematics: a stronger
statement is often easier to prove than a weaker one. It happens particularly often when using
induction. Think carefully about an inductive proof where you have assumed that a bound holds
for values smaller than n and you are trying to prove a statement for n. You use the bound you
have assumed for smaller values to help prove the bound for n. Thus if the bound you used for
smaller values is actually weak, then that is hindering you in proving the bound for n. In other
words when you want to prove something about p(n) you are using p(1)∧ . . .∧ p(n− 1). Thus if
these are stronger, they will be of greater help in proving p(n). In the case above, the problem
was that these values, p(1), . . . , p(n− 1) were too weak, and thus we were not able to prove p(n).
By using a stronger p(1), . . . , p(n − 1), however, we were able to prove a stronger p(n), one that
implied the original p(n) we wanted. When we give an induction proof in this way, we say that
we are using a stronger inductive hypothesis.

Dealing with functions other than nc

Our statement of the Master Theorem involved a recursive term plus an added term that was
Θ(nc). Sometimes algorithmic problems lead us to consider other kinds of functions. The most
common such is example is when that added function involves logarithms. For example, consider
the recurrence:

T (n) =

{
2T (n/2) + n log n if n > 1
1 if n = 1,

where n is a power of 2. Just as before, we can draw a recursion tree; the whole methodology
works, but our sums may be a little more complicated. The tree for this recurrence is shown in
Figure 5.7.

Figure 5.7: The recursion tree for T (n) = 2T (n/2) + n log n if n > 1 and T (1) = 1.

n log n

n/2 log(n/2) + n/2 log(n/2) = n log(n/2)

4(n/4 log(n/4)) = n log(n/4)

8(n/8 log(n/8)) = n log(n/8)

n/2(n/(n/2) log(n/(n/2))) = n

WorkProblem Size

n

n/2

n/4

n/8

2

log n +1
levels

1 n(1) = n

This is similar to the tree for T (n) = 2T (n/2)+n, except that the work on level i is n log
(

n
2i

)
for i ≥ 2, and for level 1 it is n, the number of subproblems, times 1. Thus if we sum the work

5.3. MORE GENERAL KINDS OF RECURRENCES 187

per level we get

log2 n−1∑
i=0

n log
(

n

2i

)
+ n = n

log2 n−1∑
i=0

log
(

n

2i

)
+ n

= n

log2 n−1∑
i=0

(log n − log 2i) + O(n)

= n

log2 n−1∑

i=0

log n −
log2 n−1∑

i=0

i

 + n

= n

(
(log2 n)(log2 n) − (log2 n)(log2 n − 1)

2

)
+ n

= O(n log2 n) .

A bit of mental arithmetic in the second last line of our equations shows that the log2 n will not
cancel out, so our solution is in fact Θ(n log2 n).

Exercise 5.3-4 Find the best big-O bound you can on the solution to the recurrence

T (n) =

{
T (n/2) + n log n if n > 1
1 if n = 1,

assuming n is a power of 2. Is this bound a big-Θ bound?

The tree for this recurrence is in Figure 5.8

Figure 5.8: The recursion tree for the recurrence T (n) = T (n/2) + n log n if n > 1 and T (1) = 1.

Problem Size

n

n/2

n

Work

n/4

n/8

2

log n
levels

n/2 log(n/2)

n/4 log(n/4)

n/8 log(n/8)

2 log 2

Notice that the work done at the bottom nodes of the tree is determined by the statement
T (1) = 1 in our recurrence, not by the recursive equation. Summing the work, we get

188 CHAPTER 5. RECURSION AND RECURRENCES

log2 n−1∑
i=0

n

2i
log

(
n

2i

)
+ 1 = n

log2 n−1∑

i=0

1
2i

(log n − log 2i)

 + 1

= n

log2 n−1∑

i=0

(
1
2

)i

(log(n) − i)

 + 1

≤ n

log n

log2 n−1∑
i=0

(
1
2

)i

 + 1

≤ n(log n)(2) + 1
= O(n log n).

In fact we have T (n) = Θ(n log n), because the largest term in the sum in our second line of
equations is log(n), and none of the terms in the sum are negative. This means that n times the
sum is at least n log n.

Removing Ceilings and Using Powers of b.

We showed that in our versions of the master theorem, we could ignore ceilings and assume
our variables were powers of b. It might appear that these two theorems do not apply to the
more general functions we have studied in this section any more than the master theorem does.
However, they actually only depend on properties of the powers nc and not the three different
kinds of cases, so it turns out we can extend them.

Notice that (xb)c = bcxc, and this proportionality holds for all values of x with constant
of proportionality bc. Putting this just a bit less precisely, we can write (xb)c = O(xc). This
suggests that we might be able to obtain Big-Θ bounds on T (n) when T satisfies a recurrence of
the form

T (n) = aT (n/b) + f(n)

with f(nb) = Θ(f(n)), and we might be able to obtain Big-O bounds on T when T satisfies a
recurrence of the form

T (n) ≤ aT (n/b) + f(n)

with f(nb) = O(f(n)). But are these conditions satisfied by any functions of practical interest?
Yes. For example if f(x) = log(x), then

f(bx) = log(b) + log(x) = Θ(log(x)).

Exercise 5.3-5 Show that if f(x) = x2 log x, then f(bx) = Θ(f(x)).

Exercise 5.3-6 If f(x) = 3x and b = 2, is f(bx) = Θ(f(x))? Is f(b(x)) = O(f(x))?

Notice that if f(x) = x2 log x, then

f(bx) = (bx)2 log bx = b2x2(log b + log x) = Θ(x2 log x).

5.3. MORE GENERAL KINDS OF RECURRENCES 189

However, if f(x) = 3x, then
f(2x) = 32x = (3x)2 = 3x · 3x,

and there is no way that this can be less than or equal to a constant multiple of 3x, so it is
neither Θ(3x) nor O(3x). Our exercises suggest the kinds of functions that satisfy the condition
f(bx) = O(f(x)) might include at least some of the kinds of functions of x which arise in the
study of algorithms. They certainly include the power functions and thus polynomial functions
and root functions, or functions bounded by such functions.

There was one other property of power functions nc that we used implicitly in our discussions
of removing floors and ceilings and assuming our variables were powers of b. Namely, if x > y (and
c ≥ 0) then xc ≥ yc. A function f from the real numbers to the real numbers is called (weakly)
increasing if whenever x > y, then f(x) ≥ f(y). Functions like f(x) = log x and f(x) = x log x
are increasing functions. On the other hand, the function defined by

f(x) =

{
x if x is a power of b
x2 otherwise

is not increasing even though it does satisfy the condition f(bx) = Θ(f(x)).

Theorem 5.8 Theorems 5.2 and 5.3 apply to recurrences in which the xc term is replaced by an
increasing function for which f(bx) = Θ(f(x)).

Proof: We iterate the recurrences in the same way as in the proofs of the original theorems,
and find that the condition f(bx) = Θ(f(x)) applied to an increasing function gives us enough
information to again bound the solution to one kind of recurrence above and below with a multiple
of the solution of the other kind. The details are similar to those in the original proofs so we
omit them.

In fact there are versions of Theorems 5.2 and 5.3 for recurrence inequalities also. The proofs
involve a similar analysis of iterated recurrences or recursion trees, and so we omit them.

Theorem 5.9 Let a and b be positive real numbers with b > 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution t(x) to the recurrence

t(x) ≤
{

at(x/b) + f(x) if x ≥ b
c if 1 ≤ x < b,

where a, b, and c are constants, satisfies t(x) = O(h(x)) if and only if every solution T (x) to the
recurrence

T (n) ≤
{

aT (n/b) + f(n) if n > 10
d if n = 1,

where n is restricted to powers of b, satisfies T (n) = O(h(n)).

Theorem 5.10 Let a and b be positive real numbers with b ≥ 2 and let f : R+ → R+ be an
increasing function such that f(bx) = O(f(x)). Then every solution T (n) to the recurrence

T (n) ≤
{

at(�n/b�) + f(n) if n > 1
d if n = 1,

190 CHAPTER 5. RECURSION AND RECURRENCES

satisfies T (n) = O(h(n)) if and only if every solution t(x) to the recurrence

t(x) ≤
{

aT (x/b) + f(x) if x ≥ b
d if 1 ≤ x < b,

satisfies t(x) = O(h(x)).

Important Concepts, Formulas, and Theorems

1. Recurrence Inequality. Recurrence inequalities are inequalities that state that T (n) is less
than or equal to some expression involving values of T (m) for m < n. A solution to a
recurrence inequality is a function T that satisfies the inequality.

2. Recursion Trees for Recurrence Inequalities. We can analyze recurrence inequalities via a
recursion tree. The process is virtually identical to our previous use of recursion trees. We
must, however, keep in mind that on each level, we are really computing an upper bound
on the work done on that level.

3. Discovering Necessary Assumptions for an Inductive Proof. If we are trying to prove a
statement that there is a value k such that an inequality of the form f(n) ≤ kg(n) or
some other statement that involves the parameter k is true, we may start an inductive
proof without knowing a value for k and determine conditions on k by assumptions that
we need to make in order for the inductive proof to work. When written properly such an
exploration is actually a valid proof.

4. Making a Stronger Inductive Hypothesis. If we are trying to prove by induction a statement
of the form p(n) ⇒ q(n) and we have a statement s(n) such that s(n) ⇒ q(n), it is
sometimes useful to try to prove the statement p(n) ⇒ s(n). This process is known as
proving a stronger statement or making an stronger inductive hypothesis. It sometimes
works because it gives us an inductive hypothesis which suffices to prove the stronger
statement even though our original statement q(n) did not give an inductive hypothesis
sufficient to prove the original statement. However we must be careful in our choice of s(n),
because we have to be able to succeed in proving p(n) ⇒ s(n).

5. When the Master Theorem does not Apply. To deal with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

where f(n) is not Θ(nc), recursion trees are an appropriate tool even though the Master
Theorem does not apply. The same holds for recurrence inequalities.

6. Increasing function. A function f : R → R is said to be (weakly) increasing if whenever
x > y, f(x) ≥ f(y)

7. Removing Floors and Ceilings when the Master Theorem does not Apply. To deal with
big-Θ bounds with recurrences of the form

T (n) =

{
aT (�n/b�) + f(n) if n > 1
d if n = 1

5.3. MORE GENERAL KINDS OF RECURRENCES 191

where f(n) is not Θ(nc), we may remove floors and ceilings and replace n by powers of b if
f is increasing and satisfies the condition f(nb) = Theta(f(n)). To deal with big-O bounds
for a similar recurrence inequality we may remove floors and ceilings if f is increasing and
satisfies the condition that f(nb) = O(f(n)).

Problems

1. (a) Find the best big-O upper bound you can to any solution to the recurrence

T (n) =

{
4T (n/2) + n log n if n > 1
1 if n = 1.

(b) Assuming that you were able to guess the result you got in part (a), prove, by induc-
tion, that your answer is correct.

2. Is the big-O upper bound in the previous exercise actually a big-Θ bound?

3. Show by induction that

T (n) =

{
8T (n/2) + n log n if n > 1
d if n = 1

has T (n) = O(n3) for any solution T (n).

4. Is the big-O upper bound in the previous problem actually a big-Θ upper bound?

5. Show by induction that any solution to a recurrence of the form

T (n) ≤ 2T (n/3) + c log3 n

is O(n log3 n). What happens if you replace 2 by 3 (explain why)? Would it make a
difference if we used a different base for the logarithm (only an intuitive explanation is
needed here).

6. What happens if you replace the 2 in Problem 5 by 4? (Hint: one way to attack this is
with recursion trees.)

7. Is the big-O upper bound in Problem 5 actually a big Θ upper bound?

8. Give an example (different from any in the text) of a function for which f(bx) = O(f(x)).
Give an example (different from any in the text) of a function for which f(bx) is not
O(f(x)).

9. Give the best big O upper bound you can for the recurrence T (n) = 2T (n/3 − 3) + n, and
then prove by induction that your upper bound is correct.

10. Find the best big-O upper bound you can to any solution to the recurrence defined on
nonnegative integer powers of two by

T (n) ≤ 2T (�n/2� + 1) + cn.

Prove, by induction, that your answer is correct.

