
Chapter 5

Recursion and Recurrences

5.1 Growth Rates of Solutions to Recurrences

Divide and Conquer Algorithms

One of the most basic and powerful algorithmic techniques is divide and conquer. Consider, for
example, the binary search algorithm, which we will describe in the context of guessing a number
between 1 and 100. Suppose someone picks a number between 1 and 100, and allows you to ask
questions of the form “Is the number greater than k?” where k is an integer you choose. Your
goal is to ask as few questions as possible to figure out the number. Your first question should
be “Is the number greater than 50?” Why is this? Well, after asking if the number is bigger
than 50, you have learned either that the number is between one and 50, or that the number is
between 51 and 100. In either case have reduced your problem to one in which the range is only
half as big. Thus you have divided the problem up into a problem that is only half as big, and
you can now (recursively) conquer this remaining problem. (If you ask any other question, one of
the possible ranges of values you could end up with would more than half the size of the original
problem.) If you continue in this fashion, always cutting the problem size in half, you will be
able to get the problem down to size one fairly quickly, and then you will know what the number
is. Of course it would be easier to cut the problem exactly in half each time if we started with
a number in the range from one to 128, but the question doesn’t sound quite so plausible then.
Thus to analyze the problem we will assume someone asks you to figure out a number between
0 and n, where n is a power of 2.

Exercise 5.1-1 Let T (n) be number of questions in binary search on the range of numbers
between 1 and n. Assuming that n is a power of 2, get a recurrence of for T (n).

For Exercise 5.1-1 we get:

T (n) =

{
T (n/2) + 1 if n ≥ 2
1 if n = 1

(5.1)

That is, the number of guesses to carry out binary search on n items is equal to 1 step (the guess)
plus the time to solve binary search on the remaining n/2 items.

159



160 CHAPTER 5. RECURSION AND RECURRENCES

What we are really interested in is how much time it takes to use binary search in a computer
program that looks for an item in an ordered list. While the number of questions gives us a
feel for the amount of time, processing each question may take several steps in our computer
program. The exact amount of time these steps take might depend on some factors we have little
control over, such as where portions of the list are stored. Also, we may have to deal with lists
whose length is not a power of two. Thus a more realistic description of the time needed would
be

T (n) ≤
{

T (�n/2�) + C1 if n ≥ 2
C2 if n = 1,

(5.2)

where C1 and C2 are constants.

It turns out that the solution to (5.1) and (5.2) are roughly the same, in a sense that will
hopefully become clear later. This is almost always the case; we will come back to this issue. For
now, let us not worry about floors and ceilings and the distinction between things that take 1
unit of time and things that take no more than some constant amount of time.

Let’s turn to another example of a divide and conquer algorithm, mergesort. In this algorithm,
you wish to sort a list of n items. Let us assume that the data is stored in an array A in positions
1 through n. Mergesort can be described as follows:

MergeSort(A,low,high)
if (low == high)

return
else

mid = (low + high) /2
MergeSort(A,low,mid)
MergeSort(A,mid+1,high)
Merge the sorted lists from the previous two steps

More details on mergesort can be found in almost any algorithms textbook. Suffice to say
that the base case (low = high) takes one step, while the other case executes 1 step, makes two
recursive calls on problems of size n/2, and then executes the Merge instruction, which can be
done in n steps.

Thus we obtain the following recurrence for the running time of mergesort:

T (n) =

{
2T (n/2) + n if n > 1
1 if n = 1

(5.3)

Recurrences such as this one can be understood via the idea of a recursion tree, which we
introduce in the following. This concept will allow us to analyze recurrences that arise in divide-
and-conquer algorithms, and those that arise in other recursive situations, such as the Towers of
Hanoi, as well. A recursion tree for a recurrence is a visual and conceptual representation of the
process of iterating the recurrence.



5.1. GROWTH RATES OF SOLUTIONS TO RECURRENCES 161

Figure 5.1: The initial stage of drawing a recursion tree

Problem Size

n

Work

n

n/2

Recursion Trees

We will introduce the idea of a recursion tree via several examples. It is helpful to have an
“algorithmic” interpretation of a recurrence. For example, (ignoring for a moment the base case)
we can interpret the recurrence

T (n) = 2T (n/2) + n (5.4)

as “in order to solve a problem of size n we must solve 2 problems of size n/2 and do n units of
additional work.” Similarly we can interpret

T (n) = T (n/4) + n2

as “in order to solve a problem of size n we must solve 1 problems of size n/4 and do n2 units of
additional work.”

We can also interpret the recurrence

T (n) = 3T (n − 1) + n

as “in order to solve a problem of size n, we must solve 3 subproblems of size n − 1 and do n
additional units of work.

In Figure 5.1 we draw the beginning of the recursion diagram for (5.4). For now, assume n is
a power of 2. A recursion tree diagram has three parts. On the left, we keep track of the problem
size, in the middle we draw the tree, and on right we keep track of the work done. We draw the
diagram in levels, each level of the diagram representing a level of recursion. Equivalently, each
level of the diagram represents a level of iteration of the recurrence. So to begin the recursion
tree for (5.4), we show in level 0 on the left that we have problem of size n. Then by drawing
a root vertex with two edges leaving it, we show in the middle that we are splitting it into 2
problems. We note on the right that we do n units of work in addition to whatever is done on
the two new problems we created. So that the diagram contains the relevant information, we
fill in part of level one. We draw two vertices in the middle representing the two problems into
which we split our main problem and show on the left that each of these problems has size n/2.

You can see how the recurrence is reflected in levels 0 and 1 of the recursion tree. The top
vertex of the tree represents T (n), an the next level we have two problems of size n/2, giving
us the recursive term 2T (n/2) of our recurrence. Then after we solve these two problems we
return to level 0 of the tree and do n additional units of work for the nonrecursive term of the
recurrence.



162 CHAPTER 5. RECURSION AND RECURRENCES

Figure 5.2: Four levels of a recursion tree.

8(n/8) = n

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

Now we continue to draw the tree in the same manner. Filling in the rest of level one and
adding a few more a few more levels, we have Figure 5.2.

Let us summarize what the diagram tells us so far. At level zero (the top level), n units of
work are done. We see that at each succeeding level, we halve the problem size and double the
number of subproblems. We also see that at level 1, each of the two subproblems requires n/2
units of additional work, and so a total of n units of additional work are done. Similarly level 2
has 4 subproblems of size n/4 and so 4(n/4) units of additional work are done.

To see how iteration of the recurrence is reflected in the diagram, we iterate the recurrence
once, getting

T (n) = 2T (n/2) + n

T (n) = 2(2T (n/4) + n/2) + n

T (n) = 4T (n/4) + n + n = 4T (n/4) + 2n

If we examine levels 0, 1, and 2 of the diagram, we see that at level 2 we have four vertices
representing four problems each of size n/4. This gives us the recursive term that we got after
iterating the recurrence. However after we solve these problems we return to level 1 where we
twice do n/2 additional units of work and to level 0 where we do another n additional units of
work. In this way each time we add a level to the tree we are showing the result of one more
iteration of the recurrence.

We now have enough information to be able to describe the recursion tree diagram in general.
To do this, we need to determine, for each level, three things

• number of subproblems,

• size of each subproblem,

• total work done.

We also need to figure out how many levels there are in the recursion tree.



5.1. GROWTH RATES OF SOLUTIONS TO RECURRENCES 163

We see that for this problem, at level i, we have 2i subproblems of size n/2i. Further, since
a problem of size 2i requires 2i units of additional work, there are (2i)[n/(2i)] = n units of work
done per level. To figure out how many levels there are in the tree, we just notice that at each
level the problem size is cut in half, and the tree stops when the problem size is 1. Therefore
there are log2 n + 1 levels of the tree, since we start with the top level and cut the problem size
in half log2 n times.1 We can thus visualize the whole tree in Figure 5.3.

Figure 5.3: A finished recursion tree diagram.

levels

Problem Size

n

n/2

n

Work

n/4

n/8

n/2 + n/2 = n

n/4 + n/4 + n/4 + n/4 = n

8(n/8) = n

1 n(1) = n

log n +1

The bottom level is different from the other levels. In the other levels, the work is described
by the recursive part of the recurrence, which in this case is T (n) = 2T (n/2)+n. At the bottom
level, the work comes from the base case. Thus we must compute the number of problems of size
1 (assuming that one is the base case), and then multiply this value by T (1). For this particular
recurrence, and for many others we will see, it turns out that if you compute the amount of work
on the bottom level as if you were computing the amount of additional work required after you
split a problem of size one into 2 problems (which, of course, makes no sense) it will be the same
value as if you compute it via the base case. Had we chosen to say that T (1) some constant other
than 1, this would not have been the case. We emphasize that the correct value always comes
from the base case: it is just a coincidence that it sometimes also comes from the recursive part
of the recurrence.

The bottom level of the tree represents the final stage of iterating the recurrence; at this level
we have n problems each requiring work T (1) = 1, and after we solve them we have to do all
the additional work from all the earlier levels. Thus iteration of the recurrence tells us that the
solution to the recurrence is the sum of all the work done at all the levels of the recursion tree.
This is exactly how we use the recursion tree to write down a solution to a recurrence.

The important thing is that we now know exactly how many levels there are, and how much
work is done at each level. Once we know this, we can sum the total amount of work done over
all the levels, giving us the solution to our recurrence. In this case, there are log2 n + 1 levels,
and at each level the amount of work we do is n units. Thus we conclude that the total amount

1To simplify notation, for the remainder of the book, if we omit the base of a logarithm, it should be assumed
to be base 2.



164 CHAPTER 5. RECURSION AND RECURRENCES

Figure 5.4: A recursion tree diagram for Recurrence 5.5.

Problem Size

n

n/2

1

n

Work

n/4

n/8

1

log n + 1
levels

n/2

n/4

n/8

of work done to solve the problem described by recurrence (5.4) is n(log2 n + 1). The total work
done throughout the tree is the solution to our recurrence, because the tree simply models the
process of iterating the recurrence. Thus the solution to recurrence (5.3) is T (n) = n(log n + 1).

More generally, we can consider a recurrence that it identical to (5.3), except that T (1) = a,
for some constant a. In this case, T (n) = an+n log n, because an units of work are done at level
1 and n additional units of work are done at each of the remaining log n levels. It is still true that,
T (n) = Θ(n log n), because the different base case did not change the solution to the recurrence
by more than a constant factor. Since one unit of time will vary from computer to computer,
and since some kinds of work might take longer than other kinds, it is the big-θ behavior of T (n)
that is really relevant. Thus although recursion trees can give us the exact solutions (such as
T (n) = an+n log n above) to recurrences, we will often just analyze a recursion tree to determine
the big-Θ or even, in complicated cases, just the big-O behavior of the actual solution to the
recurrence. In Problem ?? we explore whether the value of T (1) actually influences the big-Θ
behavior of the solution to a recurrence.

Let’s look at one more recurrence.

T (n) =

{
T (n/2) + n if n > 1
1 if n = 1

(5.5)

Again, assume n is a power of two. We can interpret this as follows: to solve a problem of
size n, we must solve one problem of size n/2 and do n units of additional work.

We draw the tree for this problem in Figure 5.4.

We see in this figure that the problem sizes are the same as in the previous tree. The rest,
however, is different. The number of subproblems does not double, rather it remains at one
on each level. Consequently the amount of work halves at each level. Note that there are still
log n + 1 levels, as the number of levels is determined by how the problem size is changing, not
by how many subproblems there are. So on level i, we have 1 problem of size n/2i, for total work
of n/2i units.



5.1. GROWTH RATES OF SOLUTIONS TO RECURRENCES 165

We now wish to compute how much work is done in solving a problem that gives this recur-
rence. Note that the additional work done is different on each level, so we have that the total
amount of work is

n + n/2 + n/4 + · · · + 2 + 1 = n

(
1 +

1
2

+
1
4

+ · · · +
(

1
2

)log2 n
)

,

which is n times a geometric series. By Theorem 4.4, the value of a geometric series in which the
largest term is one is Θ(1). This implies that the work done is described by T (n) = Θ(n).

We emphasize that there is exactly one solution to recurrence (5.5); it is the one we get by
using the recurrence to compute T (2) from T (1), then to compute T (4) from T (2), and so on.
What we have done here is show that T (n) = Θ(n). We have not actually found a solution. In
fact, for the kinds of recurrences we have been examining, once we know T (1) we can compute
T (n) for any relevant n by repeatedly using the recurrence, so there is no question that solutions
do exist. What is often important to us in applications is not the exact form of the solution, but
a big-O upper bound, or, better, a Big-Θ bound on the solution.

Exercise 5.1-2 Find a big-Θ bound for the solution to the recurrence

T (n) =

{
3T (n/3) + n if n ≥ 3
1 if n < 3

using a recursion tree. Assume that n is a power of 3.

Exercise 5.1-3 Solve the recurrence

T (n) =

{
4T (n/2) + n if n ≥ 2
1 if n = 1

using a recursion tree. Assume that n is a power of 2. Convert your solution to a
big-Θ statement about the behavior of the solution.

Exercise 5.1-4 Can you give a general big-Θ bound for solutions to recurrences of the
form T (n) = aT (n/2) + n when n is a power of 2? You may have different answers
for different values of a.

The recurrence in Exercise 5.1-2 is similar to the mergesort recurrence. One difference is
that at each step we divide into 3 problems of size n/3. Thus we get the picture in Figure 5.5.
Another difference is that the number of levels, instead of being log2 n + 1 is now log3 n + 1, so
the total work is still Θ(n log n) units. Note that logb n = Θ(log2 n) for any b > 1.

Now let’s look at the recursion tree for Exercise 5.1-3. Now, we have 4 children of size n/2,
and we get the Figure 5.6 Let’s look carefully at this tree. Just as in the mergesort tree there
are log2 n + 1 levels. However, in this tree, each node has 4 children. Thus level 0 has 1 node,
level 1 has 4 nodes, level 2 has 16 nodes, and in general level i has 4i nodes. On level i each node
corresponds to a problem of size n/2i and hence requires n/2i units of additional work. Thus the
total work on level i is 4i(n/2i) = 2in units. Summing over the levels, we get

log2 n∑
i=0

2in = n

log2 n∑
i=0

2i.



166 CHAPTER 5. RECURSION AND RECURRENCES

Figure 5.5: The recursion tree diagram for the recurrence in Exercise 5.1-2.

Problem Size

n n

Work

n/3 + n/3 + n/3 = n

1 n(1) = n

log n + 1
levels

n/3

n/9 9(n/9) = n

There are many ways to simplify that expression, for example from our formula for the sum
of a geometric series we get.

T (n) = n

log2 n∑
i=0

2i

= n
1 − 2(log2 n)+1

1 − 2

= n
1 − 2n

−1
= 2n2 − n

= Θ(n2) .

Figure 5.6: The Recursion tree for Exercise 5.1-3.

Problem Size

n n

Work

n/2 + n/2 + n/2 + n/2 = 2n

1 n^2(1) = n^2

log n + 1
levels

n/2

n/4 16(n/4) = 4n



5.1. GROWTH RATES OF SOLUTIONS TO RECURRENCES 167

More simply, by Theorem 4.4 we have that T (n) = nΘ2log n = Θ(n2).

Three Different Behaviors

Now let’s compare the trees for the recurrences T (n) = 2T (n/2) + n, T (n) = T (n/2) + n and
T (n) = 4T (n/2) + n. Note that all three trees have depth 1 + log2 n, as this is determined by
the size of the subproblems relative to the parent problem, and in each case, the size of each
subproblem is 1/2 the size of of the parent problem. To see the differences, in the first case, on
every level, there is the same amount of work. In the second case, the amount of work decreases,
with the most work being at level 0. In fact, it decreases geometrically, so by Theorem 4.4 the
total work done is bounded above and below by a constant times the work done at the root node.
In the third case, the number of nodes per level is growing at a faster rate than the problem
size is decreasing, and the level with the largest amount of work is the bottom one. Again we
have a geometric series, and so by Theorem 4.4 the total work is bounded above and below by a
constant times the amount of work done at the last level.

If you understand these three cases and the differences among them, you now understand the
great majority of the recursion trees that arise in algorithms.

So to answer Exercise 5.1-4, which asks for a general Big-Θ bound for the solutions to recur-
rences of the form T (n) = aT (n/2) + n, we can conclude the following :

1. if a < 2 then T (n) = Θ(n).

2. if a = 2 then T (n) = Θ(n log n)

3. if a > 2 then T (n) = Θ(nlog2 a)

Cases 1 and 2 follow immediately from our observations above. We can verify case 3 as
follows. At each level i we have ai nodes, each corresponding to a problem of size n/2i. Thus at
level i the total amount of work is ai(n/2i) = n(a/2)i units. Summing over the log2 n levels, we
get

n

log2 n∑
i=0

(a/2)i.

The sum is a geometric series, so the sum will be big-Θ of the largest term (see Theorem 4.4).
Since a > 2, the largest term in this case is clearly the last one, namely n(a/2)log2 n, and applying
rules of exponents and logarithms, we get that n times the largest term is

n

(
a

2

)log2 n

=
n · alog2 n

2log2 n
=

n · 2log2 a log2 n

2log2 n
=

n · nlog2 a

n
= nlog2 a

Thus the total work done is Θ(nlog2 a).

Important Concepts, Formulas, and Theorems

1. Divide and Conquer Algorithm. A divide and conquer algorithm is one that solves a problem
by dividing it into problems that are smaller but otherwise of the same type as the original
one, recursively solves these problems, and then assembles the solution of these so-called
subproblems into a solution of the original one. Not all problems can be solved by such a
strategy, but a great many problems of interest in computer science can.



168 CHAPTER 5. RECURSION AND RECURRENCES

2. Mergesort. In mergesort we sort a list of items that have some underlying order by dividing
the list in half, sorting the first half (by recursively using mergesort), sorting the second
half (by recursively using mergesort), and then merging the two sorted list. For a list of
length one mergesort returns the same list.

3. Recursion Tree. A recursion tree diagram for a recurrence of the form T (n) = aT (n/b)+g(n)
has three parts. On the left, we keep track of the problem size, in the middle we draw the
tree, and on right we keep track of the work done. We draw the diagram in levels, each
level of the diagram representing a level of recursion. The tree has a vertex representing
the initial problem and one representing each subproblem we have to solve. Each non-leaf
vertex has a children. The vertices are divided into levels corresponding to (sub-)problems
of the same size; to the left of a level of vertices we write the size of the problems the vertices
correspond to; to the right of the vertices on a given level we write the total amount of
work done at that level by an algorithm whose work is described by the recurrence, not
including the work done by any recursive calls.

4. The Base Level of a Recursion Tree. The amount of work done on the lowest level in a
recursion tree is the number of nodes times the value given by the initial condition; it is not
determined by attempting to make a computation of “additional work” done at the lowest
level.

5. Bases for Logarithms. We use log n as an alternate notation for log2 n. A fundamental fact
about logarithms is that logb n = Θ(log2 n) for any real number b > 1.

6. Three behaviors of solutions. The solution to a recurrence of the form T (n) = aT (n/2) + n
behaves in one of the following ways:

(a) if a < 2 then T (n) = Θ(n).

(b) if a = 2 then T (n) = Θ(n log n)

(c) if a > 2 then T (n) = Θ(nlog2 a)¿

Problems

1. Draw recursion trees and find big-Θ bounds on the solutions to the following recurrences.
For all of these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

2. Draw recursion trees and find find exact solutions to the following recurrences. For all of
these, assume that T (1) = 1 and n is a power of the appropriate integer.

(a) T (n) = 8T (n/2) + n

(b) T (n) = 8T (n/2) + n3

(c) T (n) = 3T (n/2) + n



5.1. GROWTH RATES OF SOLUTIONS TO RECURRENCES 169

(d) T (n) = T (n/4) + 1

(e) T (n) = 3T (n/3) + n2

3. Find the exact solution to recurrence 5.5.

4. Show that logb n = Θ(log2 n).

5. Recursion trees will still work, even if the problems do not break up geometrically, or even
if the work per level is not nc units. Draw recursion trees and and find the best big-O
bounds you can for solutions to the following recurrences. For all of these, assume that
T (1) = 1.

(a) T (n) = T (n − 1) + n

(b) T (n) = 2T (n − 1) + n

(c) T (n) = T (�√n�) + 1 (You may assume n has the form n = 22i
.)

(d) T (n) = 2T (n/2) + n log n (You may assume n is a power of 2.)

6. In each case in the previous problem, is the big-O bound you found a big-Θ bound?

7. If S(n) = aS(n − 1) + g(n) and g(n) < cn with 0 ≤ c < a, how fast does S(n) grow
(in big-Θ terms)? S(n) = aiS(n − 1) +

∑i−1
j=0 ajg(n − j) = anS(0) +

∑n−1
j=0 ajg(n − j) <

anS(0) +
∑n−1

j=0 ajcn−j = anS(0) + cn ∑n−1
j=0

(
a
c

)j = anS(0) + Θ(
(

a
c

)n) = Θ(an)

8. If S(n) = aS(n−1)+g(n) and g(n) > cn with 0 < a ≤ c, how fast does S(n) grow in big-Θ
terms?

9. given a recurrence of the form T (n) = aT (n/b) + g(n) with T (1) = c > 0 and g(n) > 0 for
all n and a recurrence of the form S(n) = aS(n/b) + g(n) with S(1) = 0 (and the same
g(n)), is there any difference in the big-Θ behavior of the solutions to the two recurrences?
What does this say about the influence of the initial condition on the big-Θ behavior of
such recurrences?


