
Chapter 3

Reflections on Logic and Proof

In this chapter, we cover some basic principles of logic and describe some methods for constructing
proofs. This chapter is not meant to be a complete enumeration of all possible proof techniques.
The philosophy of this book is that most people learn more about proofs by reading, watching,
and attempting proofs than by an extended study of the logical rules behind proofs. On the
other hand, now that we have some examples of proofs, it will help you read and do proofs if we
reflect on their structure and to discuss what constitutes a proof. To do so so we first develop a
language that will allow us to talk about proofs, and then we use this language to describe the
logical structure of a proof.

3.1 Equivalence and Implication

Equivalence of statements

Exercise 3.1-1 A group of students are working on a project that involves writing a merge sort
program. Joe and Mary have each written an algorithm for a function that takes two lists,
List1 and List2, of lengths p and q and merges them into a third list, List3. Part of Joe’s
algorithm is the following:

(1) if ((i + j ≤ p + q) && (i ≤ p) && ((j ≥ q)||(List1[i] ≤ List2[j])))
(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

The corresponding part of Mary’s algorithm is

(1) if (((i + j ≤ p + q) && (i ≤ p) && (j ≥ q))
|| ((i + j ≤ p + q) && (i ≤ p) && (List1[i] ≤ List2[j])))
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(2) List3[k] = List1[i]
(3) i = i + 1
(4) else
(5) List3[k] = List2[j]
(6) j = j + 1

(7) k = k + 1
(8) Return List3

Do Joe and Mary’s algorithms do the same thing?

Notice that Joe and Mary’s algorithms are exactly the same except for the if statement in
line 1. (How convenient; they even used the same local variables!) In Joe’s algorithm we put
entry i of List1 into position k of List3 if

i + j ≤ p + q and i ≤ p and (j ≥ q or List1[i] ≤ List2[j]),

while in Mary’s algorithm we put entry i of List1 into position k of List3 if

(i+j ≤ p+q and i ≤ p and j ≥ q) or (i+j ≤ p+q and i ≤ p and List1[i] ≤ List2[j]).

Joe and Mary’s statements are both built up from the same constituent parts (namely com-
parison statements), so we can name these constituent parts and rewrite the statements. We
use

• s to stand for i + j ≤ p + q,

• t to stand for i ≤ p,

• u to stand for j ≥ q, and

• v to stand for List1[i] ≤ List2[j]

The condition in Mary’s if statement on Line 1 of her code becomes

s and t and (u or v)

while Joe’s if statement on Line 1 of his code becomes

(s and t and u) or (s and t and v).

By recasting the statements in this symbolic form, we see that s and t always appear together
as “s and t.” We can thus simplify their expressions by substituting w for “s and t.” Mary’s
condition how has the form

w and (u or v)

and Joe’s has the form
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(w and u) or (w and v).

Although we can argue, based on our knowledge of the structure of the English language,
that Joe’s statement and Mary’s statement are saying the same thing, it will help us understand
logic if we formalize the idea of “saying the same thing.” If you look closely at Joe’s and Mary’s
statements, you can see that we are saying that, the word “and” distributes over the word “or,”
just as set intersection distributes over set union, and multiplication distributes over addition.
In order to analyze when statements mean the same thing, and explain more precisely what we
mean when we say something like “and” distributes over “or,” logicians have adopted a standard
notation for writing symbolic versions of compound statements. We shall use the symbol ∧ to
stand for “and” and ∨ to stand for “or.” In this notation, Mary’s condition becomes

w ∧ (u ∨ v)

and Joe’s becomes

(w ∧ u) ∨ (w ∧ v).

We now have a nice notation (which makes our compound statements look a lot like the two
sides of the distributive law for intersection of sets over union), but we have not yet explained why
two statements with this symbolic form mean the same thing. We must therefore give a precise
definition of “meaning the same thing,” and develop a tool for analyzing when two statements
satisfy this definition. We are going to consider symbolic compound statements that may be
built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,” and

• the symbol ¬, standing for “not.”

Truth tables

We will develop a theory for deciding when a compound statement is true based on the truth or
falsity of its component statements. Using this theory, we will determine, for a particular setting
of variables, say s, t and u, whether a particular compound statement, say (s ⊕ t) ∧ (¬u ∨ (s ∧
t))∧¬(s⊕(t∨u)), is true or false. Our technique uses truth tables, which you have probably seen
before. We will see how truth tables are the proper tool to determine whether two statements
are equivalent.

As with arithmetic, the order of operations in a logical statement is important. In our sample
compound statement (s ⊕ t) ∧ (¬u ∨ (s ∧ t)) ∧ ¬(s ⊕ (t ∨ u)) we used parentheses to make it
clear which operation to do first, with one exception, namely our use of the ¬ symbol. The
symbol ¬ always has the highest priority, which means that when we wrote ¬u∨(s∧ t), we meant
(¬u) ∨ (s ∧ t), rather than ¬(u ∨ (s ∧ t)). The principle we use here is simple; the symbol ¬



84 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

applies to the smallest number of possible following symbols needed for it to make sense. This
is the same principle we use with minus signs in algebraic expressions. With this one exception,
we will always use parentheses to make the order in which we are to perform operations clear;
you should do the same.

The operators ∧, ∨, ⊕ and ¬ are called logical connectives. The truth table for a logical
connective states, in terms of the possible truth or falsity of the component parts, when the
compound statement made by connecting those parts is true and when it is false. The the truth
tables for the connectives we have mentioned so far are in Figure 3.1

Figure 3.1: The truth tables for the basic logical connectives.

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

These truth tables define the words “and,” “or,” “exclusive or” (“xor” for short), and “not”
in the context of symbolic compound statements. For example, the truth table for ∨—or—tells
us that when s and t are both true, then so is “s or t.” It tells us that when s is true and t is
false, or s is false and t is true, then “s or t” is true. Finally it tells us that when s and t are both
false, then so is “s or t.” Is this how we use the word “or” in English? The answer is sometimes!
The word “or” is used ambiguously in English. When a teacher says “Each question on the test
will be short answer or multiple choice,” the teacher is presumably not intending that a question
could be both. Thus the word “or” is being used here in the sense of “exclusive or”—the “⊕” in
the truth tables above. When someone says “Let’s see, this afternoon I could take a walk or I
could shop for some new gloves,” she probably does not mean to preclude the possibility of doing
both—perhaps even taking a walk downtown and then shopping for new gloves before walking
back. Thus in English, we determine the way in which someone uses the word “or” from context.
In mathematics and computer science we don’t always have context and so we agree that we will
say “exclusive or” or “xor” for short when that is what we mean, and otherwise we will mean
the “or” whose truth table is given by ∨. In the case of “and” and “not” the truth tables are
exactly what we would expect.

We have been thinking of s and t as variables that stand for statements. The purpose of
a truth table is to define when a compound statement is true or false in terms of when its
component statements are true and false. Since we focus on just the truth and falsity of our
statements when we are giving truth tables, we can also think of s and t as variables that can
take on the values “true” (T) and “false” (F). We refer to these values as the truth values of s
and t. Then a truth table gives us the truth values of a compound statement in terms of the
truth values of the component parts of the compound statement. The statements s ∧ t, s ∨ t
and s ⊕ t each have two component parts, s and t. Because there are two values we can assign
to s, and for each value we assign to s there are two values we can assign to t, by the product
principle, there are 2 · 2 = 4 ways to assign truth values to s and t. Thus we have four rows in
our truth table, one for each way of assigning truth values to s and t.

For a more complex compound statement, such as the one in Line 1 in Joe and Mary’s
programs, we still want to describe situations in which the statement is true and situations in



3.1. EQUIVALENCE AND IMPLICATION 85

Table 3.1: The truth table for Joe’s statement

w u v u ∨ v w ∧ (u ∨ v)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

which the statement is false. We will do this by working out a truth table for the compound
statement from the truth tables of its symbolic statements and its connectives. We use a variable
to represent the truth value each symbolic statement. The truth table has one column for each of
the original variables, and for each of the pieces we use to build up the compound statement. The
truth table has one row for each possible way of assigning truth values to the original variables.
Thus if we have two variables, we have, as above, four rows. If we have just one variable, then
we have, as above, just two rows. If we have three variables then we will have 23 = 8 rows, and
so on.

In Table 3.1 we give the truth table for the symbolic statement that we derived from Line 1
of Joe’s algorithm. The columns to the left of the double line contain the possible truth values of
the variables; the columns to the right correspond to various sub-expressions whose truth values
we need to compute. We give the truth table as many columns as we need in order to correctly
compute the final result; as a general rule, each column should be easily computed from one or
two previous columns.

In Table 3.2 we give the truth table for the statement that we derived from Line 1 of Mary’s
algorithm.

Table 3.2: The truth table for Mary’s statement

w u v w ∧ u w ∧ v (w ∧ u) ∨ (w ∧ v)
T T T T T T
T T F T F T
T F T F T T
T F F F F F
F T T F F F
F T F F F F
F F T F F F
F F F F F F

You will notice that the pattern of T’s and F’s that we used to the left of the double line
in both Joe’s and Mary’s truth tables are the same—namely, reverse alphabetical order.1 Thus

1Alphabetical order is sometimes called lexicographic order. Lexicography is the study of the principles and
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row i of Table 3.1 represents exactly the same assignment of truth values to u , v, and w as
row i of Table 3.2. The final columns of the two truth tables are identical, which means that
Joe’s symbolic statement and Mary’s symbolic statement are true in exactly the same cases.
Therefore, the two statements must say the same thing, and Mary and Joe’s program segments
return exactly the same values. We say that two symbolic compound statements are equivalent
if they are true in exactly the same cases. Alternatively, two statements are equivalent if their
truth tables have the same final column (assuming both tables assign truth values to the original
symbolic statements in the same pattern).

Tables 3.1 and 3.2 actually prove a distributive law:

Lemma 3.1 The statements
w ∧ (u ∨ v)

and
(w ∧ u) ∨ (w ∧ v)

are equivalent.

DeMorgan’s Laws

Exercise 3.1-2 DeMorgan’s Laws say that ¬(p∨ q) is equivalent to ¬p∧¬q, and that ¬(p∧ q) is
equivalent to ¬p∨¬q,. Use truth tables to demonstrate that DeMorgan’s laws are correct.

Exercise 3.1-3 Show that p ⊕ q, the exclusive or of p and q, is equivalent to (p ∨ q) ∧ ¬(p ∧ q).
Apply one of DeMorgan’s laws to ¬(¬(p∨ q))∧¬(p∧ q) to find another symbolic statement
equivalent to the exclusive or.

To verify the first DeMorgan’s Law, we create a pair of truth tables that we have condensed into
one “double truth table” in Table 3.3. The second double vertical line separates the computation
of the truth values of ¬(p∨q) and ¬p∧¬q We see that the fourth and the last columns are identical,

Table 3.3: Proving the first DeMorgan Law.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

and therefore the first DeMorgan’s Law is correct. We can verify the second of DeMorgan’s Laws
by a similar process.

To show that p ⊕ q is equivalent to (p ∨ q) ∧ ¬(p ∧ q), we use the “double truth table” in
Table 3.4.

By applying DeMorgan’s law to ¬(¬(p∨ q))∧¬(p∧ q), we see that p⊕ q is also equivalent to
¬(¬(p ∨ q) ∨ (p ∧ q)). It was easier to use DeMorgan’s law to show this equivalence than to use
another double truth table.
practices used in making dictionaries. Thus you will also see the order we used for the T’s and F’s called reverse
lexicographic order, or reverse lex order for short.



3.1. EQUIVALENCE AND IMPLICATION 87

Table 3.4: An equivalent statement to p ⊕ q.

p q p ⊕ q p ∨ q p ∧ q ¬(p ∧ q) (p ∨ q) ∧ ¬(p ∧ q)
T T F T T F F
T F T T F T T
F T T T F T T
F F F F F T F

Implication

Another kind of compound statement occurs frequently in mathematics and computer science.
Recall 2.21, Fermat’s Little Theorem:

If p is a prime, then ap−1 mod p = 1 for each non-zero a ∈ Zp.

Fermat’s Little Theorem combines two constituent statements,

p is a prime

and

ap−1 mod p = 1 for each non-zero a ∈ Zp.

We can also restate Fermat’s Little Theorem (a bit clumsily) as

p is a prime only if ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

p is a prime implies ap−1 mod p = 1 for each non-zero a ∈ Zp,

or

ap−1 mod p = 1 for each non-zero a ∈ Zp if p is prime.

Using s to stand for “p is a prime” and t to stand for “ap−1 mod p = 1 for every non-zero
a ∈ Zp,” we symbolize any of the four statements of Fermat’s Little Theorem as

s ⇒ t,

which most people read as “s implies t.” When we translate from symbolic language to English,
it is often clearer to say “If s then t.”

We summarize this discussion in the following definition:

Definition 3.1 The following four English phrases are intended to mean the same thing. In
other words, they are defined by the same truth table:
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• s implies t,

• if s then t,

• t if s, and

• s only if t.

Observe that the use of “only if” may seem a little different than the normal usage in English.
Also observe that there are still other ways of making an “if . . . then” statement in English. In a
number of our lemmas, theorems, and corollaries (for example, Corollary 2.6 and Lemma 2.5) we
have had two sentences. In the first we say “Suppose . . . .” In the second we say “Then . . . .” The
two sentences “Suppose s.” and “Then t.” are equivalent to the single sentence s ⇒ t. When we
have a statement equivalent to s ⇒ t, we call the statement s the hypothesis of the implication
and we call the statement t the conclusion of the implication.

If and only if

The word “if” and the phrase “only if” frequently appear together in mathematical statements.
For example, in Theorem 2.9 we proved

A number a has a multiplicative inverse in Zn if and only if there are integers x and
y such that ax + ny = 1.

Using s to stand for the statement “a number a has a multiplicative inverse in Zn” ant t to stand
for the statement “there are integers x and y such that ax+ny = 1,” we can write this statement
symbolically as

s if and only if t.

Referring to Definition 3.1, we parse this as

s if t, and s only if t,

which again by the definition above is the same as

s ⇒ t and t ⇒ s.

We denote the statement “s if and only if t” by s ⇔ t. Statements of the form s ⇒ t and s ⇔ t are
called conditional statements, and the connectives ⇒ and ⇔ are called conditional connectives.

Exercise 3.1-4 Use truth tables to explain the difference between s ⇒ t and s ⇔ t.

In order to be able to analyze the truth and falsity of statements involving “implies” and “if
and only if,” we need to understand exactly how they are different. By constructing truth tables
for these statements, we see that there is only one case in which they could have different truth
values. In particular if s is true and t is true, then we would say that both s ⇒ t and s ⇔ t are
true. If s is true and t is false, we would say that both s ⇒ t and s ⇔ t are false. In the case
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that both s and t are false we would say that s ⇔ is true. What about s ⇒ t? Let us try an
example. Suppose that s is the statement “it is supposed to rain” and t is the statement “I carry
an umbrella.” Then if, on a given day, it is not supposed to rain and I do not carry an umbrella,
we would say that the statement “if it is supposed to rain then I carry an umbrella” is true on
that day. This suggests that we also want to say s ⇒ t is true if s is false and t is false.2 Thus
the truth tables are identical in rows one, two, and four. For “implies” and “if and only if” to
mean different things, the truth tables must therefore be different in row three. Row three is the
case where s is false and t is true. Clearly in this case we would want s if and only if t to be
false, so our only choice is to say that s ⇒ t is true in this case. This gives us the truth tables in
Figure 3.2.

Figure 3.2: The truth tables for “implies” and for “if and only if.”

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

Here is another place where (as with the usage for “or”) English usage is sometimes inconsis-
tent. Suppose a parent says “I will take the family to McDougalls for dinner if you get an A on
this test,” and even though the student gets a C, the parent still takes the family to McDougalls
for dinner. While this is something we didn’t expect, was the parent’s statement still true? Some
people would say “yes”; others would say “no”. Those who would say “no” mean, in effect,
that in this context the parent’s statement meant the same as “I will take the family to dinner
at McDougalls if and only if you get an A on this test.” In other words, to some people, in
certain contexts, “If” and “If and only if” mean the same thing! Fortunately questions of child
rearing aren’t part of mathematics or computer science (at least not this kind of question!). In
mathematics and computer science, we adopt the two truth tables just given as the meaning of
the compound statement s ⇒ t (or “if s then t” or “t if s”) and the compound statement s ⇔ t
(or “s if and only if t.”) In particular, the truth table marked IMPLIES is the truth table referred
to in Definition 3.1. This truth table thus defines the mathematical meaning of s implies t, or
any of the other three statements referred to in that definition.

Some people have difficulty using the truth table for s ⇒ t because of this ambiguity in
English. The following example can be helpful in resolving this ambiguity. Suppose that I hold
an ordinary playing card (with its back to you) and say “If this card is a heart, then it is a
queen.” In which of the following four circumstances would you say I lied:

1. the card is a heart and a queen

2. the card is a heart and a king
2Note that we are making this conclusion on the basis of one example. Why can we do so? We are not trying

to prove something, but trying to figure out what the appropriate definition is for the ⇒ connective. Since we
have said that the truth or falsity of s ⇒ t depends only on the truth or falsity of s and t, one example serves to
lead us to an appropriate definition. If a different example led us to a different definition, then we would want to
define two different kinds of implications, just as we have two different kinds of “ors,” ∨ and ⊕. Fortunately, the
only kinds of conditional statements we need for doing mathematics and computer science are “implies” and “if
and only if.”
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3. the card is a diamond and a queen

4. the card is a diamond and a king?

You would certainly say I lied in the case the card is the king of hearts, and you would certainly
say I didn’t lie if the card is the queen of hearts. Hopefully in this example, the inconsistency
of English language seems out of place to you and you would not say I am a liar in either of the
other cases. Now we apply the principle called the principle of the excluded middle

Principle 3.1 A statement is true exactly when it is not false.

This principle tells us that that my statement is true in the three cases where you wouldn’t say
I lied. We used this principle implicitly before when we introduced the principle of proof by
contradiction, Principle 2.1. We were explaining the proof of Corollary 2.6, which states

Suppose there is a b in Zn such that the equation

a ·n x = b

does not have a solution. Then a does not have a multiplicative inverse in Zn.

We had assumed that the hypothesis of the corollary was true so that a ·n x = b does not have
a solution. Then we assumed the conclusion that a does not have a multiplicative inverse was
false. We saw that these two assumptions led to a contradiction, so that it was impossible for
both of them to be true. Thus we concluded whenever the first assumption was true, the second
had to be false. Why could we conclude this? Because the principle of the excluded middle says
that the second assumption has to be either true or false. We didn’t introduce the principle of
the excluded middle at this point for two reasons. First, we expected that the reader would agree
with our proof even if we didn’t mention the principle, and second, we didn’t want to confuse
the reader’s understanding of proof by contradiction by talking about two principles at once!

Important Concepts, Formulas, and Theorems

1. Logical statements. Logical statements may be built up from the following notation:

• symbols (s, t, etc.) standing for statements (these will be called variables),

• the symbol ∧, standing for “and,”

• the symbol ∨, standing for “or,”

• the symbol ⊕ standing for “exclusive or,”

• the symbol ¬, standing for “not,”

• the symbol ⇒, standing for “implies,” and

• the symbol ⇔ , standing for “if and only if.”

The operators ∧, ∨, ⊕, ⇒, ⇔, and ¬ are called logical connectives. The operators ⇒ and
⇔ are called conditional connectives.
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2. Truth Tables. The following are truth tables for the basic logical connectives:

AND
s t s ∧ t

T T T
T F F
F T F
F F F

OR
s t s ∨ t

T T T
T F T
F T T
F F F

XOR
s t s ⊕ t

T T F
T F T
F T T
F F F

NOT
s s ⊕ t

T F
F T

3. Equivalence of logical statements. We say that two symbolic compound statements are
equivalent if they are true in exactly the same cases.

4. Distributive Law. The statements
w ∧ (u ∨ v)

and
(w ∧ u) ∨ (w ∧ v)

are equivalent.

5. DeMorgan’s Laws. DeMorgan’s Laws say that ¬(p ∨ q) is equivalent to ¬p ∧ ¬q, and that
¬(p ∧ q) is equivalent to ¬p ∨ ¬q.

6. Implication. The following four English phrases are equivalent:

• s implies t,

• if s then t,

• t if s, and

• s only if t.

7. Truth tables for implies and if and only if.

IMPLIES
s t s ⇒ t

T T T
T F F
F T T
F F T

IF AND ONLY IF
s t s ⇔ t

T T T
T F F
F T F
F F T

8. Principle of the Excluded Middle. A statement is true exactly when it is not false.

Problems

1. Give truth tables for the following expressions:

a. (s ∨ t) ∧ (¬s ∨ t) ∧ (s ∨ ¬t)

b. (s ⇒ t) ∧ (t ⇒ u)

c. (s ∨ t ∨ u) ∧ (s ∨ ¬t ∨ u)

2. Find at least two more examples of the use of some word or phrase equivalent to “implies”
in lemmas, theorems, or corollaries in Chapters One or Two.
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3. Find at least two more examples of the use of the phrase “if and only if” in lemmas,
theorems, and corollaries in Chapters One or Two.

4. Show that the statements s ⇒ t and ¬s ∨ t are equivalent.

5. Prove the DeMorgan law which states ¬(p ∧ q) = ¬p ∨ ¬q.

6. Show that p ⊕ q is equivalent to (p ∧ ¬q) ∨ (¬p ∧ q).

7. Give a simplified form of each of the following expressions (using T to stand for a statement
that is always true and F to stand for a statement that is always false)3:

• s ∨ s,
• s ∧ s,
• s ∨ ¬s,
• s ∧ ¬s.

8. Use a truth table to show that (s∨t)∧(u∨v) is equivalent to (s∧u)∨(s∧v)∨(t∧u)∨(t∧v).
What algebraic rule is this similar to?

9. Use DeMorgan’s Law, the distributive law, and Problems 7 and 8 to show that ¬((s ∨ t) ∧
(s ∨ ¬t)) is equivalent to ¬s.

10. Give an example in English where “or” seems to you to mean exclusive or (or where you
think it would for many people) and an example in English where “or” seems to you to
mean inclusive or (or where you think it would for many people).

11. Give an example in English where “if . . . then” seems to you to mean “if and only if” (or
where you think it would to many people) and an example in English where it seems to
you not to mean “if and only if” (or where you think it would not to many people).

12. Find a statement involving only ∧, ∨ and ¬ (and s and t) equivalent to s ⇔ t. Does your
statement have as few symbols as possible? If you think it doesn’t, try to find one with
fewer symbols.

13. Suppose that for each line of a 2-variable truth table, you are told whether the final column
in that line should evaluate to true or to false. (For example, you might be told that the
final column should contain T, F, T, and F in that order.) Explain how to create a logical
statement using the symbols s, t, ∧, ∨, and ¬ that has that pattern as its final column.
Can you extend this procedure to an arbitrary number of variables?

14. In Problem 13, your solution may have used ∧, ∨ and ¬. Is it possible to give a solution
using only one of those symbols? Is it possible to give a solution using only two of these
symbols?

15. We proved that ∧ distributes over ∨ in the sense of giving two equivalent statements that
represent the two “sides” of the distributive law. For each question below, explain why
your answer is true.

a. Does ∨ distribute over ∧?
b. Does ∨ distribute over ⊕?
c. Does ∧ distribute over ⊕?

3A statement that is always true is called a tautology; a statement that is always false is called a contradiction


