
2.4. DETAILS OF THE RSA CRYPTOSYSTEM 73

2.4 Details of the RSA Cryptosystem

In this section, we deal with some issues related to implementing the RSA cryptosystem: expo-
nentiating large numbers, finding primes, and factoring.

Practical Aspects of Exponentiation mod n

Suppose you are going to raise a 100 digit number a to the 10120th power modulo a 200 digit
integer n. Note that the exponent is a 121 digit number.

Exercise 2.4-1 Propose an algorithm to compute a10120
mod n, where a is a 100 digit number

and n is a 200 digit number.

Exercise 2.4-2 What can we say about how long this algorithm would take on a computer that
can do one infinite precision arithmetic operation in constant time?

Exercise 2.4-3 What can we say about how long this would take on a computer that can
multiply integers in time proportional to the product of the number of digits in the two
numbers, i.e. multiplying an x-digit number by a y-digit number takes roughly xy time?

Notice that if we form the sequence a, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 we are modeling
the process of forming a11 by successively multiplying by a. If, on the other hand, we form
the sequence a, a2, a4, a8, a16, a32, a64, a128, a256, a512, a1024, we are modeling the process of
successive squaring, and in the same number of multiplications we are able to get a raised to a
four digit number. Each time we square we double the exponent, so every ten steps or so we will
add three to the number of digits of the exponent. Thus in a bit under 400 multiplications, we
will get a10120

. This suggests that our algorithm should be to square a some number of times
until the result is almost a10120

, and then multiply by some smaller powers of a until we get
exactly what we want. More precisely, we square a and continue squaring the result until we get
the largest a2k1 such that 2k1 is less than 10120, then multiply a2k1 by the largest a2k2 such that
2k1 + 2k2 is less than 10120 and so on until we have

10120 = 2k1 + 2k2 + · · · + 2kr

for some integer r. (Can you connect this with the binary representation of 10120?) Then we get

a10120
= a2k1

a2k2 · · · a2kr
.

Notice that all these powers of a have been computed in the process of discovering k1. Thus it
makes sense to save them as you compute them.

To be more concrete, let’s see how to compute a43. We may write 43 = 32 + 8 + 2 + 1, and
thus

a43 = a25
a23

a21
a20

. (2.21)

So, we first compute a20
, a21

, a22
, a23

a24
, a25

, using 5 multiplications. Then we can compute
a43, via equation 2.21, using 3 additional multiplications. This saves a large number of multipli-
cations.



74 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

On a machine that could do infinite precision arithmetic in constant time, we would need
about log2(10120) steps to compute all the powers a2i

, and perhaps equally many steps to do the
multiplications of the appropriate powers. At the end we could take the result mod n. Thus
the length of time it would take to do these computations would be more or less 2 log2(10120) =
240 log2 10 times the time needed to do one operation. (Since log2 10 is about 3.33, it will take
at most 800 times the amount of time for one operation to compute a10120

. )

You may not be used to thinking about how large the numbers get when you are doing
computation. Computers hold fairly large numbers (4-byte integers in the range roughly −231

to 231 are typical), and this suffices for most purposes. Because of the way computer hardware
works, as long as numbers fit into one 4-byte integer, the time to do simple arithmetic operations
doesn’t depend on the value of the numbers involved. (A standard way to say this is to say
that the time to do a simple arithmetic operation is constant.) However, when we talk about
numbers that are much larger than 231, we have to take special care to implement our arithmetic
operations correctly, and also we have to be aware that operations are slower.

Since 210 = 1024, we have that 231 is twice as big as 230 = (210)3 = (1024)3 and so is
somewhat more than two billion, or 2 · 109. In particular, it is less than 1010. Since 10120 is a
one followed by 120 zeros, raising a positive integer other than one to the 10120th power takes
us completely out of the realm of the numbers that we are used to making exact computations
with. For example, 10(10120) has 119 more zeros following the 1 in the exponent than does 1010.

It is accurate to assume that when multiplying large numbers, the time it takes is roughly
proportional to the product of the number of digits in each. If we computed our 100 digit number
to the 10120th power, we would be computing a number with more than 10120 digits. We clearly
do not want to be doing computation on such numbers, as our computer cannot even store such
a number!

Fortunately, since the number we are computing will ultimately be taken modulo some 200
digit number, we can make all our computations modulo that number. (See Lemma 2.3.) By
doing so, we ensure that the two numbers we are multiplying together have at most 200 digits,
and so the time needed for the problem proposed in Exercise 2.4-1 would be a proportionality
constant times 40,000 times log2(10120) times the time needed for a basic operation plus the time
needed to figure out which powers of a are multiplied together, which would be quite small in
comparison.

Note that this algorithm, on 200 digit numbers, is as much as 40, 000 times slower than on
simple integers. This is a noticeable effect and if you use or write an encryption program, you
can see this effect when you run it. However, we can still typically do this calculation in less than
a second, a small price to pay for secure communication.

How long does it take to use the RSA Algorithm?

Encoding and decoding messages according to the RSA algorithm requires many calculations.
How long will all this arithmetic take? Let’s assume for now that Bob has already chosen p,
q, e, and d, and so he knows n as well. When Alice wants to send Bob the message x, she
sends xe mod n. By our analyses in Exercise 2.4-2 and Exercise 2.4-3 we see that this amount
of time is more or less proportional to log2 e, which is itself proportional to the number of digits
of e, though the first constant of proportionality depends on the method our computer uses to
multiply numbers. Since e has no more than 200 digits, this should not be too time consuming



2.4. DETAILS OF THE RSA CRYPTOSYSTEM 75

for Alice if she has a reasonable computer. (On the other hand, if she wants to send a message
consisting of many segments of 200 digits each, she might want to use the RSA system to send a
key for another simpler (secret key) system, and then use that simpler system for the message.)

It takes Bob a similar amount of time to decode, as he has to take the message to the dth
power, mod n.

We commented already that nobody knows a fast way to find x from xe mod n. In fact,
nobody knows that there isn’t a fast way either, which means that it is possible that the RSA
cryptosystem could be broken some time in the future. We also don’t know whether extracting
eth roots mod n is in the class of NP-complete problems, an important family of problems with
the property that a reasonably fast solution of any one of them will lead to a reasonably fast
solution of any of them. We do know that extracting eth roots is no harder than these problems,
but it may be easier.

However, here someone is not restricted to extracting roots to discover x. Someone who
knows n and knows that Bob is using the RSA system, could presumably factor n, discover p
and q, use the extended GCD algorithm to compute d and then decode all of Bob’s messages.
However, nobody knows how to factor integers quickly either. Again, we don’t know if factoring
is NP-complete, but we do know that it is no harder than the NP-complete problems. Thus here
is a second possible way around the RSA system. However, enough people have worked on the
factoring problem, that most people are confident that it is in fact difficult, in which case the
RSA system is safe, as long as we use keys that are long enough.

How hard is factoring?

Exercise 2.4-4 Factor 225,413. (The idea is to try to do this without resorting to computers,
but if you give up by hand and calculator, using a computer is fine.)

With current technology, keys with roughly 100 digits are not that hard to crack. In other
words, people can factor numbers that are roughly 100 digits long, using methods that are a little
more sophisticated than the obvious approach of trying all possible divisors. However, when the
numbers get long, say over 120 digits, they become very hard to factor. The record, as of the year
2000, for factoring is a roughly 155-digit number. To factor this number, thousands of computers
around the world were used, and it took several months. So given the current technology, RSA
with a 200 digit key seems to be very secure.

Finding large primes

There is one more issue to consider in implementing the RSA system for Bob. We said that Bob
chooses two primes of about a hundred digits each. But how does he choose them? It follows
from some celebrated work on the density of prime numbers that if we were to choose a number
m at random, and check about loge(m) numbers around m for primality, we would expect that
one of these numbers was prime. Thus if we have a reasonably quick way to check whether a
number is prime, we shouldn’t have to guess too many numbers, even with a hundred or so digits,
before we find one we can show is prime.

However, we have just mentioned that nobody knows a quick way to find any or all factors
of a number. The standard way of proving a number is prime is by showing that it and 1 are



76 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

its only factors. For the same reasons that factoring is hard, the simple approach to primality
testing, test all possible divisors, is much too slow. If we did not have a faster way to check
whether a number is prime, the RSA system would be useless.

In August of 2002, Agrawal, Kayal and Saxena announced an algorithm for testing whether
an integer n is prime which they can show takes no more than the twelveth power of the number
of digits of n to determine whether n is prime, and in practice seems to take significantly less
time. While the algorithm requires more than the background we are able to provide in this
book, its description and the proof that it works in the specified time uses only results that one
might find in an undergraduate abstract algebra course and an undergraduate number theory
course! The central theme of the algorithm is the use of a variation of Fermat’s Little Theorem.

In 1976 Miller8 was able to use Fermat’s Little Theorem to show that if a conjecture called
the “Extended Reiman Hypothesis” was true, then an algorithm he developed would determine
whether a number n was prime in a time bounded above by a polynomial in the number of digits
of n. In 1980 Rabin9 modified Miller’s method to get one that would determine in polynomial
time whether a number was prime without the extra hypothesis, but with a probability of error
that could be made as small a positive number as one might desire, but not zero. We describe the
general idea behind all of these advances in the context of what people now call the Miller-Rabin
primality test. As of the writing of this book, variations on this kind of algorithm are used to
provide primes for cryptography.

We know, by Fermat’s Little Theorem, that in Zp with p prime, xp−1 mod p = 1 for every x
between 1 and p − 1. What about xm−1, in Zm, when m is not prime?

Exercise 2.4-5 Suppose x is a member of Zm that has no multiplicative inverse. Is it possible
that xn−1 mod n = 1?

We answer the question of the exercise in our next lemma.

Lemma 2.25 Let m be a non-prime, and let x be a number in Zm which has no multiplicative
inverse. Then xm−1 mod m �= 1.

Proof: Assume, for the purpose of contradiction, that

xm−1 mod m = 1.

Then
x · xm−2 mod m = 1.

But then xm−2 mod m is the inverse of x in Zm, which contradicts the fact that x has no
multiplicative inverse. Thus it must be the case that xm−1 mod m �= 1.

This distinction between primes and non-primes gives the idea for an algorithm. Suppose we
have some number m, and are not sure whether it is prime or not. We can run the following
algorithm:

8G.L. Miller. “Riemann’s Hypothesis and tests for primality,” J. Computer and Systems Science 13, 1976, pp
300-317.

9M. O. Rabin. “Probabilistic algorithm for testing primality.” Journal of Number Theory, 12, 1980. pp 128-138.



2.4. DETAILS OF THE RSA CRYPTOSYSTEM 77

(1) PrimeTest(m)
(2) choose a random number x, 2 ≤ x ≤ m − 1.
(3) compute y = xm−1 mod m
(4) if (y = 1)
(5) output ‘‘ m might be prime’’
(6) else
(7) output ‘‘m is definitely not prime’’

Note the asymmetry here. If y �= 1, then m is definitely not prime, and we are done. On
the other hand, if y = 1, then the m might be prime, and we probably want to do some other
calculations. In fact, we can repeat the algorithm Primetest(m) for t times, with a different
random number x each time. If on any of the t runs, the algorithm outputs “m is definitely not
prime”, then the number m is definitely not prime, as we have an x for which xm−1 �= 1. On
the other hand, if on all t runs, the algorithm Primetest(m) outputs “m might be prime”, then,
with reasonable certainty, we can say that the number m is prime. This is actually an example
of a randomized algorithm; we will be studying these in greater detail later in the course. For
now, let’s informally see how likely it is that we make a mistake.

We can see that the chance of making a mistake depends on, for a particular non-prime m,
exactly how many numbers a have the property that am−1 = 1. If the answer is that very few
do, then our algorithm is very likely to give the correct answer. On the other hand, if the answer
is most of them, then we are more likely to give an incorrect answer.

In Exercise 12 at the end of the section, you will show that the number of elements in Zm

without inverses is at least
√

m. In fact, even many numbers that do have inverses will also fail
the test xm−1 = 1. For example, in Z12 only 1 passes the test while in Z15 only 1 and 14 pass the
test. (Z12 really is not typical; can you explain why? See Problem 13 at the end of this section
for a hint.)

In fact, the Miller-Rabin algorithm modifies the test slightly (in a way that we won’t describe
here10) so that for any non-prime m, at least half of the possible values we could choose for x
will fail the modified test and hence will show that m is composite. As we will see when we
learn about probability, this implies that if we repeat the test t times, and assert that an x which
passes these t tests is prime, the probability of being wrong is actually 2−t. So, if we repeat
the test 10 times, we have only about a 1 in a thousand chance of making a mistake, and if we
repeat it 100 times, we have only about a 1 in 2100 (a little less than one in a nonillion) chance
of making a mistake!

Numbers we have chosen by this algorithm are sometimes called pseudoprimes. They are
called this because they are very likely to be prime. In practice, pseudoprimes are used instead
of primes in implementations of the RSA cryptosystem. The worst that can happen when a
pseudoprime is not prime is that a message may be garbled; in this case we know that our
pseudoprime is not really prime, and choose new pseudoprimes and ask our sender to send the
message again. (Note that we do not change p and q with each use of the system; unless we were
to receive a garbled message, we would have no reason to change them.)

A number theory theorem called the Prime Number Theorem tells us that if we check about
loge n numbers near n we can expect one of them to be prime. A d digit number is at least 10d−1

10See, for example, Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, McGraw Hill/MIT Press,
2002



78 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY

and less than 10d, so its natural logarithm is between (d − 1) loge 10 and d loge 10. if we want to
find a d digit prime, we can take any d digit number and test about d loge 10 numbers near it for
primality, and it is reasonable for us to expect that one of them will turn out to be prime. The
number loge 10 is 2.3 to two decimal places. Thus it does not take a really large amount of time
to find two prime numbers with a hundred (or so) digits each.

Important Concepts, Formulas, and Theorems

1. Exponentiation. To perform exponentiation mod n efficiently, we use repeated squaring,
and take mods after each arithmetic operation.

2. Security of RSA. The security of RSA rests on the fact that no one has developed an
efficient algorithm for factoring, or for finding x, given xe mod n.

3. Fermat’s Little Theorem does not hold for composites. Let m b e a non-prime, and let x be
a number in Zn which has no multiplicative inverse. Then xm−1 mod m �= 1.

4. Testing numbers for primality. The randomized Miller-Rabin algorithm will tell you almost
surely if a given number is prime.

5. Finding prime numbers. By applying the randomized Miller-Rabin to d ln 10 (which is
about 2.3d) numbers with d digits, you can expect to find at least one that is prime.

Problems

1. What is 31024 in Z7? (This is a straightforward problem to do by hand.)

2. Suppose we have computed a2, a4, a8, a16 and a32. What is the most efficient way for us
to compute a53?

3. A gigabyte is one billion bytes; a terabyte is one trillion bytes. A byte is eight bits, each
a zero or a 1. Since 210 = 1024, which is about 1000, we can store about three digits
(any number between 0 and 999) in ten bits. About how many decimal digits could we
store in a five gigabytes of memory? About how many decimal digits could we store in five
terabytes of memory? How does this compare to the number 10120? To do this problem it
is reasonable to continue to assume that 1024 is about 1000.

4. Find all numbers a different from 1 and −1 (which is the same as 8) such that a8 mod 9 = 1.

5. Use a spreadsheet, programmable calculator or computer to find all numbers a different from
1 and −1 mod 33 = 32 with a32 mod 33 = 1. (This problem is relatively straightforward to
do with a spreadsheet that can compute mods and will let you “fill in” rows and columns
with formulas. However you do have to know how to use the spreadsheet in this way to
make it strightforward!)

6. How many digits does the 10120th power of 10100 have?

7. If a is a 100 digit number, is the number of digits of a10120
closer to 10120 or 10240? Is it a

lot closer? Does the answer depend on what a actually is rather than the number of digits
it has?



2.4. DETAILS OF THE RSA CRYPTOSYSTEM 79

8. Explain what our outline of the solution to Exercise 2.4-1 has to do with the binary repre-
sentation of 10120.

9. Give careful pseudocode to compute ax mod n. Make your algorithm as efficient as possible.
You may use right shift n in your algorithm.

10. Suppose we want to compute ae1e2···em mod n. Discuss whether it makes sense to reduce
the exponents mod n as we compute their product. In particular, what rule of exponents
would allow us to do this, and do you think this rule of exponents makes sense?

11. Number theorists use ϕ(n) to stand for the number of elements of Zn that have inverses.
Suppose we want to compute ae1e2···em mod n. Would it make sense for us to reduce our
exponents mod ϕ(n) as we compute their product? Why?

12. Show that if m is not prime, then at least
√

m elements of Zm do not have multiplicative
inverses.

13. Show that in Zp+1, where p is prime, only one element passes the primality test xm−1 = 1.
(In this case, m = p + 1.)

14. Suppose for RSA, p = 11, q = 19, and e = 7. What is the value of d? Show how to encrypt
the message 100, and then show how to decrypt the resulting message.

15. Suppose for applying RSA, p = 11, q = 23, and e = 13. What is the value of d? Show how
to encrypt the message 100 and then how to decrypt the resulting message.

Applying the extended GCD algorithm, or just by experimenting we see that d = 17.
n = pq = 253. Then

10013 mod 253 = 1026 mod 253 = (−12)8 · 100 mod 253
= (100(124 mod 253)(124 mod 253)) mod 253 = 133.

To reverse the process,

13317 = (((1334 mod 253)4 mod 253) · 133) mod 253 = 210 · 133 mod 253 = 100.

16. A digital signature is a way to securely sign a document. That is, it is a way to put your
“signature” on a document so that anyone reading it knows that it is you who have signed
it, but no one else can “forge” your signature. The document itself may be public; it is
your signature that we are trying to protect. Digital signatures are, in a way, the opposite
of encryption, as if Bob wants to sign a message, he first applies his signature to it (think
of this as encryption) and then the rest of the world can easily read it (think of this as
decryption). Explain, in detail, how to achieve digital signatures, using ideas similar to
those used for RSA. In particular, anyone who has the document and has your signature
of the document (and knows your public key) should be able to determine that you signed
it.



80 CHAPTER 2. CRYPTOGRAPHY AND NUMBER THEORY


