Variance when variables are not independent

Consider the experiment of rolling two dice, and let X on each roll be the value showing on the first die, and Y on each roll be the sum of the values showing on both dice. As we have seen before,

$$
\begin{array}{lrr}
1 \leq X \leq 6 & E(X)=3.5 & V(X)=2.92 \\
2 \leq Y \leq 12 & E(Y)=7 & V(Y)=5.84
\end{array}
$$

X and Y are not independent: $p(X=1)$ and $p(Y=12)$ are both nonzero, but $p(X=$ $1 \& Y=12)=0 \neq p(X=1) \cdot p(Y=12)$.

Consider all the values of Y and $X+Y$ in a table where die 1's value is across the top and die 2's value down the left side (values of X are the column headers):

$Y, X+Y$	1	2	3	4	5	6
1	2,3	3,5	4,7	5,9	6,11	7,13
2	3,4	4,6	5,8	6,10	7,12	8,14
3	4,5	5,7	6,9	7,11	8,13	9,15
4	5,6	6,8	7,10	8,12	9,14	10,16
5	6,7	7,9	8,11	9,13	10,15	11,17
6	7,8	8,10	9,12	10,14	11,16	12,18

You can see in this that overall, higher values of X tend to go with higher values of Y and lower with lower; this makes the distribution of values of $X+Y$ flatter (more pushed to the highest and lowest values) than it would be if X and Y were independent (say, we had three dice and Y was the sum on dice 2 and 3). In particular:

$$
\begin{aligned}
& p(X+Y=k)=1 / 36 \text { for } k \in\{3,4,17,18\} \\
& p(X+Y=k)=1 / 18 \text { for } k \in\{5,6,15,16\} \\
& p(X+Y=k)=1 / 12 \text { for } k \in\{7,8,9,10,11,12,13,14\} .
\end{aligned}
$$

You can check that $E(X+Y)=10.5=E(X)+E(Y)$; we don't need independence for adding expected values. We do need independence for multiplying expected values, which is the issue when we consider variance.

To find $V(X+Y)$ directly, find the expected value of $(X+Y)^{2}$:

$$
\begin{aligned}
& E\left((X+Y)^{2}\right)=\frac{9+16+289+324}{36}+\frac{25+36+225+256}{18} \\
&+\frac{49+64+81+100+121+144+169+196}{12} \\
&=\frac{638}{36}+\frac{542}{18}+\frac{924}{12}=124.83 \\
& V(X+Y)=E\left((X+Y)^{2}\right)-E(X+Y)^{2}=124.83-110.25=14.58
\end{aligned}
$$

On the other hand, $V(X)+V(Y)=2.92+5.84=8.76$, which is smaller, as expected.

