
Two small examples worked out in full

1. The “flush” vs. “flush given ace” problem.

Suppose that instead of a five-card hand out of a 52-card deck we have a two-card hand
out of a nine-card deck: A 2 3 A 2 3 A 2 3. A flush in this case is two cards of matching
color.

In the full deck, there are 9 flushes: A/2, A/3, 2/3 in each of the three colors. There are(
9
2

)
= 36 hands total, so the probability of getting a flush is 9/36, or 1/4.

If we restrict only to hands containing at least one ace, we drop down to 6 flushes: A/2,
A/3 in each of the three colors. However, there are now a lot fewer total hands: 3 hands
where both cards are aces, and 3 ·6 = 18 where one is an ace and one is not. The probability
of a flush in this case is 6/21 = 28.6%, which is larger than 1/4. We’ve kept the A/2 and
A/3 flushes and the A/2, A/3, and A/A non-flushes. We’ve lost only the 2/3 flushes but all
of the 2/3, 2/2, and 3/3 non-flushes.

The confusion comes in when you assign causality to the probability difference. In a
given game of poker, a player either has a flush or doesn’t, and your knowledge of whether
or not that player has an ace does not change things. However, taking hands as a whole
(alternatively, thinking about trends over many games of poker), there is a higher percentage
of flushes among the ace-containing hands than among the hands as a whole.

2. An “at least one” problem.

Why can you not typically do an “at least one” problem as a single computation? Consider
the alphabet {a, b, c} and the problem of counting the 3-letter sequences (repeats allowed)
with at least one a. There are 27 such sequences, so we can list them out. Let’s categorize
them by how many a’s they contain.

0 a’s 1 a 2 a’s 3 a’s
bbb cbb abb bab bba aab baa aaa
bbc cbc abc bac bca aac caa
bcb ccb acb cab cba aba
bcc ccc acc cac cca aca

Of the 27 total sequences, 8 contain no a’s and the remaining 19 contain at least one.
What goes wrong if we try to count the “at least one” sequences all in one product?

The sensible approach might be to say “we have to have an a somewhere, so that’s 3
options; then the rest can be anything, so 3 · 3, for a total of 3 · 3 · 3 sequences.” We’ve
counted everything! Except that in our intended counting, it’s not that we’re counting
everything, it’s that we’re counting some of our intended sequences multiple times.

The sequences with one a each get counted once. The sequences with 2 a’s, however, get
counted twice, and most egregiously, the sequence aaa is counted three times: “put the a
in the first slot and fill the other two in with a’s,” “put the a in the second slot and fill the
other two in with a’s,” and “put the a in the third slot and fill the other two in with a’s.”
Whatever slots did not get the “special” a can get a’s anyway when we fill in the rest.

Can later tasks accomplish the same thing as earlier ones? If so, you are almost certainly
overcounting. Take care!


