The addition of a lower-order term may be compensated for by a constant multiple of a higher-order term.

Red: x^{2}
Green: $x^{2}+x$
Blue: $2 x^{2}$

Upon zooming out a bit, the lower order term hardly makes a difference.

Red: x^{2}
Green: $x^{2}+x$
Blue: $2 x^{2}$

If the lower order term has a large coefficient it may take longer to overtake it.

Red: x^{2}
Green: $x^{2}+20 x$
Blue: $2 x^{2}$

No coefficient can make up for a higher power of x, though larger coefficients stay on top for a longer time.

Red: x^{2}
Green: $2 x^{2}$
Blue: $4 x^{2}$
Black: x^{3}

