1. An example showing REF is not reflexive.

Recall REF $=\{(R, S): R, S$ both reflexive $\}$ for R, S relations on some fixed set A.

Let $A=\{1,2\}$, so $A \times A=\{(1,1),(1,2),(2,1),(2,2)\}$.
All possible binary relations on A :

$$
\begin{array}{ll}
R_{1}=\emptyset & R_{9}=\{(2,2),(2,1)\} \\
R_{2}=\{(1,1)\} & R_{10}=\{(1,2),(2,1)\} \\
R_{3}=\{(1,2)\} & R_{11}=\{(1,1),(1,2),(2,1)\} \\
R_{4}=\{(2,1)\} & R_{12}=\{(2,2),(1,2),(2,1)\} \\
R_{5}=\{(2,2)\} & R_{13}=\{(1,1),(2,2)\} \\
R_{6}=\{(1,1),(1,2)\} & R_{14}=\{(1,1),(2,2),(1,2)\} \\
R_{7}=\{(1,1),(2,1)\} & R_{15}=\{(1,1),(2,2),(2,1)\} \\
R_{8}=\{(2,2),(1,2)\} & R_{16}=A \times A
\end{array}
$$

Only R_{13} through R_{16} are reflexive.
The graph for REF defined from this A looks like this:

R_{13} through R_{16}

R_{1} through R_{12}
2. Transitive functions on $A=\{1,2,3,4,5\}$.

For f a function from A to itself, membership of the pair (x, y) in the relation defined by f can be written simply as " $f(x)=y$ ". Rewriting the logical formula for transitivity with that we get

$$
\forall x, y, z \in A((f(x)=y \wedge f(y)=z) \rightarrow f(x)=z)
$$

The only way f can satisfy this and still be a function is if $y=z$.

Therefore, if $f(x)=y$, we must also have $f(y)=y$.

Possible solutions:

- The identity function: if $f(x)=x$, certainly $f(x)=x$.
- Any constant function: $f(x)=f(y)$ for all x, y. (5 possibilities for this A)

Both of the above are examples of the most general solution:
Partition A and for each partition set $X \subseteq A$, define f as a constant function from X to X.
Example: $f(1)=f(3)=1 ; f(2)=f(5)=5 ; f(4)=4$.
If you partition A into 5 sets, this gives the identity function, and if you partition A into 1 set, this gives one of the constant functions.

