Math 19 final exam review problems - Answers

(1) $f_{1}=g=x^{2}, f_{2}=-x^{2}$.
(2) Suits only: $52!/(13!)^{4}$. Values only: $52!/(4!)^{13}$.
(3) $\sum_{k=10}^{20} \sum_{j=4}^{12}\left(j^{2} 2^{k}+10\right)=636\left(2^{21}-2^{10}\right)+990$.
(4) Claim. For every positive integer $n, n^{2}+n$ is odd.

Problem: incorrect base case.
Claim. For each natural number n there is a natural number greater than n^{2}.

Problem: proving a universally quantified statement by example.
Claim. Define the relation R on \mathbb{Z} by $R(n, m) \leftrightarrow[n-m$ is even $]$. Then R is an equivalence relation.

Problem: assumes the claim and unwraps the definition, rather than proving the claim by proving the pieces of the definition.
Claim. For real numbers a and $b,-b \leq a \leq b$ if and only if $|a| \leq b$. Problem: proves only one direction of the bi-implication.
(5) Count each of the following situations with the appropriate permutation or combination.
(a) $P(8,6)$
(b) $C(25,8)$
(c) $C(32,14)$
(d) $P(150,15)$
(6) $C(21,7)=P(21,7) / 7$! and $P(21,14) / 14$! and $C(21,14)$. There are more convoluted ways as well, I'm sure, but they would involve multiplying and dividing many times to get to the correct fraction.
(7) $p($ line $3 \mid$ defective $)=0.2$.
(8) Partial answers given.
(a) $A=\{1,2,3,4\} . R_{1}=\{(1,1),(2,2),(3,3),(4,4)\} . \quad R_{1} \cup R_{2}=\leq$ relation. $R_{1} \cap R_{2}=\emptyset$.
(b) $A=\mathbb{Z} . \quad R_{1}(x, y)=\{(x, y): x= \pm y\} . \quad R_{1}=R_{2}=R_{1} \cup R_{2}=$ $R_{1} \cap R_{2}$.
(c) $A=\{a, b, c, d\} . R_{1} \cap R_{2}=\emptyset$.
(9) (a) $A \subseteq B$
(b) $x \leq y$
(c) $x<y$
(d) $x>y$
(e) $x \geq y$
(10) (a) $C(8,3)$
(b) $1 / C(8,3)$
(c) $1 /(C(8,3) \cdot 3!)=1 / P(8,3)$
(11) (a) $C(4,2) / C(52,2)$
(b) $[C(4,2) C(50,3)-C(4,2) C(48,3)] /[C(52,2) C(50,3)]$
(c) Same as before.
(d) Square of part (b).
(12) (a) 96%
(b) $1 / 25$ (yes, the match with (a) was an oversight)
(13) $E(X)=0.8, V(X)=1.46$.
(14) no
(15) $\sum_{i=2}^{10} \sum_{j=1}^{15}\left(20 i-\frac{1}{2} j^{3}\right)=-48600$.
(16) $k n^{2}$
(a) $(20!) / 2^{10}$
(b) 20 !
(c) $(20!) /\left(2^{10} 10!\right)$
(18) $4 \cdot 3[13 C(13,4)+C(13,2) C(13,3)]$
(19) Prove that for all $n \geq 1, L_{1}^{2}+L_{2}^{2}+\ldots+L_{n}^{2}=L_{n} L_{n+1}-2$.

Induction. Base case: $L_{1} L_{2}-2=1 \cdot 3-2=1=L_{1}^{2}$.
Inductive hypothesis: for some $n \geq 1, L_{1}^{2}+L_{2}^{2}+\ldots+L_{n}^{2}=L_{n} L_{n+1}-2$.
By the hypothesis, $L_{1}^{2}+L_{2}^{2}+\ldots+L_{n}^{2}+L_{n+1}^{2}=L_{n} L_{n+1}^{n}-2+L_{n+1}^{2}$.
We need this to equal $L_{n+1} L_{n+2}-2$. Note $L_{n} L_{n+1}+L_{n+1}^{2}-2=$ $L_{n+1}\left(L_{n}+L_{n+1}\right)-2$ and apply the recursive definition.
(20) For $O\left(\frac{1}{100} x^{3}\right): C=100, k=1$. For not $O(100 x)$: let $x>100 C, k$.
(21) (a) $\exists x \forall y(x+y=10)$ is true with domain $\{5\}$ and false in \mathbb{N}.
(b) $\forall y \exists x(x+y=10)$ is true in \mathbb{Z} and false in \mathbb{N}.

