Math 17
Winter 2015
Turing Machines

A Turing machine, considered as if it were a physical object, consists of the following:

1

A linear tape divided into cells, having a leftmost cell, and extending indefinitely (or
infinitely) to the right.

A read/write head, that can scan one cell at a time, and move to the left or right,.
Finitely many symbols, which can be written on the tape, one to a cell.

Finitely many states, in any one of which the machine may be. One state is designated
as an initial state, and one or more as final states.

A program, consisting of finitely many instructions of the form
(current state, read symbol == write symbol, direction, new state).

For example, the instruction
(QE)J 2=1,1, QG)

means that when in state g5 reading the symbol 2 on a cell of the tape, the machine
will write 1 on that cell (replacing the 2), move one cell to the left, and shift into state

G-

The direction can be L (left), R (right) or S (stay). The write symbol can be the same
as the read symbol, and the new state can be the same as the current state. If the read
symbol is A, that indicates that the cell being scanned is empty (has no symbol in it).

For each state that is not a final state, and each symbol (including A), there is exactly
one instruction beginning with that current state and that read symbol. There are no
instructions with a final state as the current state.

The specific Turing machines we work with will obey the following conventions:

1.

2.

3.

The symbols are %, 0, 1, 2, 3, and A.

A cell containing the symbol A is treated exactly like an empty cell. (We follow the
convention of the book here. We could do without this symbol by giving our machine
the ability to erase the contents of a cell and leave it empty.)

For any given machine, the states are ¢1, ¢, gs, ..., ¢, for some n > 3, although we
may give them other names as well.

(a} The state ¢ is the initial state.



(b) The final states are g, (also called +, YES, or DONE), and ¢s (also called —, NO,
or NOTDONE).

(¢) The content of the tape always consist of * in the leftmost cell, followed by some
number (perhaps zero) of contiguous cells containing symbols 0, 1, 2, or 3, followed
by cells that contain X or are empty.

4. We will also use the following abbreviations.

(a) If an instruction has g as the current state and () as the read symbol, that means
this instruction is to be followed when in state ¢ when reading a symbol for which
no other instruction is given. (Formally, the machine should be understood to
have an instruction of this form for every relevant symbol.)

(b) If an instruction has — as the write symbol, that means the write symbol is the
same as the read symbol (or is A if the read symbal is A).

(c) We will not use A in instructions. Instead, if a machine has an instruction (g, A =
s, D, q'}, it is understood also to have the instruction (g, A == s, D, ¢').

We may put the program for a Turing machine into the form of a table, as in the following
example.

| TURING MACHINE STAR

| current state | read symbol ” write symbol | direction new state
0 * * S g2
! 0 0 L q1
Gt 1 1 L 7
q1 2 2 L q1
0 3 3 L Q
¢ A A L ¢
Vi A A L q1

| TURING MACHINE STAR (USING ABBREVIATIONS)

| current state [ read symbol write symbol | direction | new state
6 * * S q2
i O - L 4

‘Turing machine STAR never alters the content of the tape. Started in initial state ¢,
with the head positioned on any cell of the tape, this machine moves the head to the left,
remaining in state g;, until the head reaches a cell containing the symbol *. (Assuming our
conventions are being followed, this will be the leftmost cell of the tape.) When it has reached
that cell, the machine leaves the head positioned there, and halts in state ¢go (DONE).

This is one of the “basis machines” described in the textbook, from which more compli-
cated Turing machines are assembled. Its purpose is simply to move the head to the leftmost
cell of the tape.



We code a sequence of natural numbers (ay, ag, .. .,a,) as an input for a Turing machine
by starting the machine with the following symbols on the tape {from left to right):

*;

0 followed by a;-many 1's;
0 followed by ag-many 1’s;

0 followed by a,-many 1’s;

empty cells (or cells containing A).

The output is (a1, aa, ..., a,) if the machine halts with these symbols on the tape.
For example, if the tape contains symbols %*001011AAA -+, the input (or output) is
(0,1,2).

If X C N* a Turing machine is a decision machine for X if, when started with input
(@1,...,ay), it halts with output (a1,...,ax), in state gz (YES) if (ay,...,0;) € X, and in
state g3 (NO) if (ay,...,ar) € X. '

If f:N* — N is a function, a Turing machine computes f if, when started with input
(ai,...,ay), it halts in state go (DONE) with output (ay,...,ax, flay,. .., a)).

We can also describe Turing machines using a kind of flow chart. In this flow chart,
non-final states will be represented by empty circles, and final states by circles containing +,
—, YES, NO, DONE or NOTDONE. From a circle containing START, an arrow will point
to the initial state.

(It is not necessary to label the non-final states. We need to number states only so the
program instructions can identify the current and new states. In the flow chart, arrows will
indicate the change from state to state.)

From each non-final state (viewed as a current state), arrows labeled with symbols (read
symbols) will lead to action boxes, represented by rectangles divided into left and right parts.
The left part of an action box will contain a symbol (the write symbol), and the right part
will contain a direction (L, R or S). From an action box, an arrow will lead to the new state.

We use owr abbreviation conventions in flowchart representations of Turing machines, as
well.

On the next page, the machine STAR is pictured in this way, as is another basis machine,
THEREIS(2). '



Flowchart Representation of STAR




From the flowchart representation of THEREIS(2), we can make a table representation.
We begin by writing the number 1 in the circle to which the arrow from the START circle
leads, and writing numbers larger than 3 in the other empty circles. (See the picture below.)

Now, for example, there is an arrow, leading from the circle labeled 1 (representing
current state ¢), labeled * (representing the read symbol), to an action block containing *
on the left (representing the write symbol) and R on the right {representing the direction),
and an arrow leading from that action block to the circle labeled 4 (representing the new
state g4). This tells us that an instruction

(QI’ * = *)Rs Q4)

is in the program for THEREIS(2), or that the line

Lo | * [ * R %

is in the table for THEREIS(2).



Similarly, there is an arrow, leading from the circle labeled 4, labeled 2, to an action
block containing 2 on the left and S on the right, and an arrow leading from that action
block to a circle labeled YES. This gives the instruction

( 44, 2 == 2v S: 512)

or the line in a table
| | 2 E | S 0 ]

Here is the table representation for THEREIS(2).

] THEREIS(2) |
| current state | read symbol | write symbol | direction | new state [
4 * * R 44
i O . L 8!
qu A A S qs
Q4 2 2 S %
0 () - R 2]

By examining either the table or the flowchart representation, we can see what THEREIS(2)
does. It does not alter the contents of the tape. First it moves the head to the leftmost cell
(always assuming our conventions are followed, and this is the only cell containing ). Then
it moves the head right until it encounters either a cell containing 2, in which case it stops
in state YES, or an empty cell, in which case it stops in state NO.

That is, THEREIS{2) positions the head at the first cell containing 2, unless there is no
such cell, in which case it positions the head at the first empty cell. It indicates whether or
not it found a cell containing 2 by halting in state YES or NO.



Written Exercises due Friday, January 30

Here is a table representing a Turing machine, Turing machine A,

I

TURING MACHINE A

| current state | read symbol | write symbol | direction | new state
3! * * R Q
71 () - L q1
¢ 0 0 R s
qu () . S 44
s 1 1 R s
6 A A S g
5 1 1 R 6
s A A S s

On the last page is a flowchart representation of a Turing machine, Turing machine B,

1.
2.
3.

Draw a flowchart representation of Turing machine A.
Turing machine A is a decision machine for a subset X € N. What is X7

Assuming Turing machine A is started with an input that is a sequence of length 1,
where is the head when the machine halts?

What does Turing machine A do if started with an input that is not a sequence of
length 17 (Does it halt? If so, in what state, with the head in what position, and with
what written on the tape? If not, how does the head move, and what, if anything, does
it write on the tape? Do the answers to these questions depend on what is initially
written on the tape, or on where the head is initially positioned?)

Give a table representation of Turing machine B.

Turing machine B computes a function f: N® — N. What is that function?
Assuming Turing machine B is started with an input that is a sequence of length 3,
where is the head when the machine halts?

What does Turing machine B do if started with an input that is not a sequence of
length 37

Design a Turing machine DELETE that, when started with input (a,,...,a,_1,a,) on
the tape, halts in state DONE with output (a1,...,a,_1).

Here n can be any positive natural number. That is, your machine must work properly
regardless of the length of the input sequence. It doesn’t matter what your machine
does if the initial tape contents do not have the correct form to input a sequence.

You may represent your Turing machine using a list of instructions, a table, or a
flowchart representation, whichever you prefer.






