
Math 17
Winter 2015

Notes from January 7

A note on “Notes”: These notes, not just today’s but in general, are not complete
transcriptions of everything we did in class. Instead, they are notes on a few things, often
examples, the details of which I think it would be useful to see written out.

In class on Wednesday, January 5, we talked about Diophantine sets and Diophantine
expressions.

Diophantine expressions:
A Diophantine expression is an expression of the form

(∃x1)(∃x2) · · · (∃xn) (D(a1, . . . , ak, x1, . . . , xn) = 0),

where D is a polynomial with unknowns a1, . . . , ak, x1, . . . xn and integer coefficients. (Recall
that “(∃x) · · · ” means “there exists a natural number x such that · · · .”) Notice that the
“(D(a1, . . . , ak, x1, . . . , xn) = 0)” part is a Diophantine equation.

We might also write a Diophantine expression as

(∃x1)(∃x2) · · · (∃xn) (DL(a1, . . . , ak, x1, . . . , xn) = DR(a1, . . . , ak, x1, . . . , xn)).

This is not the official form, but can easily be rewritten in the official form.
The unknowns in a Diophantine expression are separated into two classes, the x1, . . . , xn

that appear in the “there exists. . . ” parts (∃ is called an existential quantifier and these are
called quantified variables), and the a1, . . . ak that do not (which may be called free variables,
because they are not quantified, or parameters1).

A Diophantine expression says that the k-tuple (a1, . . . , ak) (that is, the natural numbers
a1, . . . , ak considered in that order) has some property. For example, we saw in class that

(∃x) (b = a + 1 + x)

is another way to say a < b. Of course, this works only because we are restricting the range
of our unknowns to natural numbers.

It is important to be clear that the expression (∃x) (b = a + 1 + x) is saying something
about a and b, but not about x. Some people call the quantified variables x1, . . . , xn “dummy

variables.” An analogy is the integral

∫ b

a

f(x) dx, which means the same thing as

∫ b

a

f(u) du,

and is telling us something about a and b (namely, the area under the graph of f(x) above
the interval with endpoints x = a and x = b); x, or u, is a “dummy variable.”

1We’ll talk in class on Friday about why they are called parameters.
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Diophantine sets:
A Diophantine set is a subset A of Nk that is defined by a Diophantine expression; that

is, a set of the form

A = {(a1, . . . , ak) | (∃x1)(∃x2) · · · (∃xn)(D(a1, . . . , ak, x1, . . . , xn) = 0)}.

We say the Diophantine expression

(∃x1)(∃x2) · · · (∃xn)(D(a1, . . . , ak, x1, . . . , xn) = 0)

defines the set A.
The set A = {(a, b) | a < b} is Diophantine because it can be defined by the Diophantine

expression (∃x) (b = a + 1 + x):

A = {(a, b) | (∃x) (b = a + 1 + x)}.

To show the set
B = {a | a is composite}

is Diophantine, we have to figure out how to say “a is composite” with a Diophantine
expression. Since a is composite just in case a can be written as a product of two factors
each of which is greater than 1 and less than a, we begin with

(∃x)(∃y) (1 < x < a & 1 < y < a & xy = a).

We then notice that if one factor is strictly between 1 and a (“strictly” means 1 < x < a
rather than 1 ≤ x ≤ a), then the other must be also, so we can simplify a little to get

(∃x)(∃y) (1 < x < a & xy = a).

This is not yet a Diophantine expression, because (1 < x < a & xy = a) is not a Diophantine
equation. However, xy = a is a Diophantine equation, and we know how to say 1 < x and
x < a with Diophantine expressions. We rewrite

(∃x)(∃y)
(
1 < x & x < a & xy = a

)
;

(∃x)(∃y)
(
(∃v)(x = 1 + 1 + v) & (∃w)(a = x + 1 + w) & (xy = a)

)
.

It will not change the meaning if we move the “(∃v)” and “(∃w)” outside the large paren-
theses, and rewrite “1 + 1” as “2”:

(∃x)(∃y)(∃v)(∃w)
(
(x = 2 + v) & (a = x + 1 + w) & (xy = a)

)
.

This is almost right, except that inside the large parentheses we have, not a single Diophan-
tine equation, but several Diophantine equations, all of which must be true. That is, we
have a system of Diophantine equations.
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Fortunately, we have already seen how to take a system of Diophantine equations and
turn it into a single Diophantine equation with the same solutions. We’ll use this method
to rewrite our expression.

(∃x)(∃y)(∃v)(∃w)
(
(x = 2 + v) & (a = x + 1 + w) & (xy = a)

)
;

(∃x)(∃y)(∃v)(∃w)
(
(x− (2 + v) = 0) & (a− (x + 1 + w) = 0) & (xy − a = 0)

)
;

(∃x)(∃y)(∃v)(∃w)
(
(x− (2 + v))2 + (a− (x + 1 + w))2 + (xy − a)2 = 0

)
.

Now we have a Diophantine expression meaning “a is composite,” which proves B is Dio-
phantine:

B = {a | a is composite} =

{a | (∃x)(∃y)(∃v)(∃w)
(
(x− (2 + v))2 + (a− (x + 1 + w))2 + (xy − a)2 = 0

)
}.

There is actually an easier way to say a is composite. A natural number a is composite
just in case it can be written as a product of two factors, each of which is greater than or
equal to 2. A natural number b is greater than or equal to 2 just in case it can be written in
the form b = 2 + x. Therefore, we can show B is composite by writing

B = {a | a is composite} = {a | (∃x)(∃y) ((2 + x)(2 + y) = a)}.

I chose not to show you this in class, because the way we did it in class illustrates some
important techniques.

We are going to prove a general result about rewriting expressions. It will tell us that
because we can rewrite “1 < x” and “x < a” as Diophantine expressions, it automatically
follows that we can rewrite

(∃x)(∃y)
(
1 < x & x < a & xy = a

)
,

as a Diophantine expression. This will save us from going through all this rewriting every
single time.
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