Math 17

Winter 2015

Notes from January 7

A note on "Notes": These notes, not just today's but in general, are not complete transcriptions of everything we did in class. Instead, they are notes on a few things, often examples, the details of which I think it would be useful to see written out.

In class on Wednesday, January 5, we talked about Diophantine sets and Diophantine expressions.

Diophantine expressions:

A Diophantine expression is an expression of the form

$$
\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right)\left(D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0\right),
$$

where D is a polynomial with unknowns $a_{1}, \ldots, a_{k}, x_{1}, \ldots x_{n}$ and integer coefficients. (Recall that " $\exists x) \ldots$ " means "there exists a natural number x such that") Notice that the " $\left(D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0\right)$ " part is a Diophantine equation.

We might also write a Diophantine expression as

$$
\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right)\left(D_{L}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=D_{R}\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)\right) .
$$

This is not the official form, but can easily be rewritten in the official form.
The unknowns in a Diophantine expression are separated into two classes, the x_{1}, \ldots, x_{n} that appear in the "there exists..." parts (\exists is called an existential quantifier and these are called quantified variables), and the $a_{1}, \ldots a_{k}$ that do not (which may be called free variables, because they are not quantified, or parameters ${ }^{1}$).

A Diophantine expression says that the k-tuple $\left(a_{1}, \ldots, a_{k}\right)$ (that is, the natural numbers a_{1}, \ldots, a_{k} considered in that order) has some property. For example, we saw in class that

$$
(\exists x)(b=a+1+x)
$$

is another way to say $a<b$. Of course, this works only because we are restricting the range of our unknowns to natural numbers.

It is important to be clear that the expression $(\exists x)(b=a+1+x)$ is saying something about a and b, but not about x. Some people call the quantified variables x_{1}, \ldots, x_{n} "dummy variables." An analogy is the integral $\int_{a}^{b} f(x) d x$, which means the same thing as $\int_{a}^{b} f(u) d u$, and is telling us something about a and b (namely, the area under the graph of $f(x)$ above the interval with endpoints $x=a$ and $x=b$); x, or u, is a "dummy variable."

[^0]
Diophantine sets:

A Diophantine set is a subset A of \mathbb{N}^{k} that is defined by a Diophantine expression; that is, a set of the form

$$
A=\left\{\left(a_{1}, \ldots, a_{k}\right) \mid\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right)\left(D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0\right)\right\} .
$$

We say the Diophantine expression

$$
\left(\exists x_{1}\right)\left(\exists x_{2}\right) \cdots\left(\exists x_{n}\right)\left(D\left(a_{1}, \ldots, a_{k}, x_{1}, \ldots, x_{n}\right)=0\right)
$$

defines the set A.
The set $A=\{(a, b) \mid a<b\}$ is Diophantine because it can be defined by the Diophantine expression $(\exists x)(b=a+1+x)$:

$$
A=\{(a, b) \mid(\exists x)(b=a+1+x)\} .
$$

To show the set

$$
B=\{a \mid a \text { is composite }\}
$$

is Diophantine, we have to figure out how to say " a is composite" with a Diophantine expression. Since a is composite just in case a can be written as a product of two factors each of which is greater than 1 and less than a, we begin with

$$
(\exists x)(\exists y)(1<x<a \& 1<y<a \& x y=a) .
$$

We then notice that if one factor is strictly between 1 and a ("strictly" means $1<x<a$ rather than $1 \leq x \leq a$), then the other must be also, so we can simplify a little to get

$$
(\exists x)(\exists y)(1<x<a \& x y=a) .
$$

This is not yet a Diophantine expression, because $(1<x<a \& x y=a)$ is not a Diophantine equation. However, $x y=a$ is a Diophantine equation, and we know how to say $1<x$ and $x<a$ with Diophantine expressions. We rewrite

$$
\begin{gathered}
(\exists x)(\exists y)(1<x \& x<a \& x y=a) \\
(\exists x)(\exists y)((\exists v)(x=1+1+v) \&(\exists w)(a=x+1+w) \&(x y=a))
\end{gathered}
$$

It will not change the meaning if we move the " $(\exists v)$ " and " $(\exists w)$ " outside the large parentheses, and rewrite " $1+1$ " as " 2 ":

$$
(\exists x)(\exists y)(\exists v)(\exists w)((x=2+v) \&(a=x+1+w) \&(x y=a))
$$

This is almost right, except that inside the large parentheses we have, not a single Diophantine equation, but several Diophantine equations, all of which must be true. That is, we have a system of Diophantine equations.

Fortunately, we have already seen how to take a system of Diophantine equations and turn it into a single Diophantine equation with the same solutions. We'll use this method to rewrite our expression.

$$
\begin{gathered}
(\exists x)(\exists y)(\exists v)(\exists w)((x=2+v) \&(a=x+1+w) \&(x y=a)) ; \\
(\exists x)(\exists y)(\exists v)(\exists w)((x-(2+v)=0) \&(a-(x+1+w)=0) \&(x y-a=0)) ; \\
(\exists x)(\exists y)(\exists v)(\exists w)\left((x-(2+v))^{2}+(a-(x+1+w))^{2}+(x y-a)^{2}=0\right) .
\end{gathered}
$$

Now we have a Diophantine expression meaning " a is composite," which proves B is Diophantine:

$$
\begin{gathered}
B=\{a \mid a \text { is composite }\}= \\
\left\{a \mid(\exists x)(\exists y)(\exists v)(\exists w)\left((x-(2+v))^{2}+(a-(x+1+w))^{2}+(x y-a)^{2}=0\right)\right\} .
\end{gathered}
$$

There is actually an easier way to say a is composite. A natural number a is composite just in case it can be written as a product of two factors, each of which is greater than or equal to 2 . A natural number b is greater than or equal to 2 just in case it can be written in the form $b=2+x$. Therefore, we can show B is composite by writing

$$
B=\{a \mid a \text { is composite }\}=\{a \mid(\exists x)(\exists y)((2+x)(2+y)=a)\}
$$

I chose not to show you this in class, because the way we did it in class illustrates some important techniques.

We are going to prove a general result about rewriting expressions. It will tell us that because we can rewrite " $1<x$ " and " $x<a$ " as Diophantine expressions, it automatically follows that we can rewrite

$$
(\exists x)(\exists y)(1<x \& x<a \& x y=a)
$$

as a Diophantine expression. This will save us from going through all this rewriting every single time.

[^0]: ${ }^{1}$ We'll talk in class on Friday about why they are called parameters.

