Math 17
Winter 2015
Monday, February 9
$X \subseteq \mathbb{N}^{n}$ is a Turing semidecicable set.
M is a semidecision machine for X, using symbols

$$
\alpha_{1}=*, \alpha_{2}=0, \alpha_{3}=1, \alpha_{4}, \ldots, \alpha_{w}
$$

and states

$$
q_{1} \text { (starting state), } q_{2}, \ldots, q_{\bar{w}} .
$$

We wish to prove that X is Diophantine by simulating the action of M.
We code a configuration of M by a pair (p, t).
The coding we use is positional coding base b, where b is prime, $b \geq w+\bar{w}$.
The number p codes a sequence that represents the head location and state of M. An i in position j means that M is in state i and the head is positioned to read cell j.

The number t codes a sequence that represents the contents of the tape. An i in position j means that symbol α_{i} is written in cell j. A 0 in position j can mean either that cell j contains λ or that cell j is empty.

The starting configuration for running M with input $\left(a_{1}, \ldots, a_{n}\right)$ (in which the sequence $\left(a_{1}, \ldots, a_{n}\right)$ is coded on the tape, the head is reading the leftmost cell, and the machine is in state q_{1}) is coded by the pair

$$
(p, t)=\left(\operatorname{InitP}\left(a_{1}, \ldots, a_{n}\right), \operatorname{Init} T\left(a_{1}, \ldots, a_{n}\right)\right) .
$$

We showed that InitP and InitT are Diophantine functions.
If (p, t) codes a configuration, the configuration obtained by running M for one step is coded by the pair

$$
(N e x t P(p, t), N e x t T(p, t))
$$

(provided (p, t) does not code a configuration in a final state), and the configuration obtained by running M for k steps is coded by the pair

$$
(\operatorname{After} P(k, p, t), \operatorname{After} T(k, p, t))
$$

(provided a final state is not reached in fewer than k steps).
If the configuration (p, t) represents a machine in a final state, then $\operatorname{NextP}(p, t)=0$ and $N \operatorname{ext} T(p, t)=t$.

If, beginning with the configuration coded by (p, t), a final state is reached in fewer than k steps, then $\operatorname{After} P(k, p, t)=0$, and $\operatorname{After} T(k, p, t)$ codes the contents of the tape at the time the final state is reached.

If we can show that A fter P is a Diophantine function, then we will have shown that X is Diophantine. That is because we will now have $\left(a_{1}, \ldots, a_{n}\right) \in X$ iff M with input $\left(a_{1}, \ldots, a_{n}\right)$ eventually halts, and M with input $\left(a_{1}, \ldots, a_{n}\right)$ eventually halts iff

$$
(\exists k)\left[\operatorname{After} P\left(k, \operatorname{InitP}\left(a_{1}, \ldots, a_{n}\right), \operatorname{Init} T\left(a_{1}, \ldots, a_{n}\right)\right)=0\right] .
$$

We talked about showing NextP and NextT are Diophantine, in the following way:
Suppose M has instructions $I_{1}, I_{2}, \ldots, I_{\theta}$.
For each instruction I, there is a Diophantine property $\operatorname{MoveI}\left(p, t, p^{\prime}, t^{\prime}\right)$, which means that instruction I applies to the configuration coded by (p, t), and when the machine acts according to that instruction, the resulting configuration is coded by $\left(p^{\prime}, t^{\prime}\right)$.

Now we have
$p^{\prime}=\operatorname{NextP}(p, t) \Longleftrightarrow\left(\exists t^{\prime}\right)\left[\operatorname{MoveI}_{1}\left(p, t, p^{\prime}, t^{\prime},\right) \vee \operatorname{MoveI}_{2}\left(p, t, p^{\prime}, t^{\prime},\right) \vee \cdots \vee \operatorname{MoveI}_{\theta}\left(p, t, p^{\prime}, t^{\prime},\right)\right]$
$t^{\prime}=\operatorname{NextT}(p, t) \Longleftrightarrow\left(\exists p^{\prime}\right)\left[\operatorname{MoveI}_{1}\left(p, t, p^{\prime}, t^{\prime},\right) \vee \operatorname{MoveI}_{2}\left(p, t, p^{\prime}, t^{\prime},\right) \vee \cdots \vee \operatorname{MoveI}_{\theta}\left(p, t, p^{\prime}, t^{\prime},\right)\right]$
Now we will show that $A f t e r P$ and $A f t e r T$ are Diophantine. We will not use the fact that $N e x t P$ and $N e x t T$ are Diophantine in this proof, so since $\operatorname{NextP}(p, t)=\operatorname{After} P(1, p, t)$ and $\operatorname{NextT}(p, t)=\operatorname{After} T(1, p, t)$, this will constitute another proof that $N e x t P$ and $N e x t T$ are Diophantine.

