Math 17
Winter 2015
Written Exercises Assigned January 9

These exercises are due at the beginning of class on Friday, January 16.
This handout also includes solutions to some of the exercises we were working on in class,
following the homework exercises.

Exercises:

1. Given two polynomials Di(ay,...,ax,21,...2,) and Dsy(ay, ..., ak, Y1, .. Ym), show
how to produce a single polynomial

D(ay, ... a5, T1,. s Tpy Yty - - Ym)

such that D(ay,...,a, 1, ..., Tn,Y1,- .- Ym) = 0 if and only if we have
Di(ay, ... ak,z1,...2,) =0 or Dy(ay,...,ax,y1,-..Ym) = 0 (or possibly both).
(Hint: Given two numbers, how can you find a number that equals zero just in case at
least one of the original two numbers does?)

2. Use the previous exercise to show that Diophantine properties are closed under dis-
junction (inclusive or; “p or 1" can be written “(¢ V ¢)").
Conclude that, for any given k, the Diophantine sets of dimension k are closed under
union.

3. Do exercise 2 below.

4. Do exercise 3 below.

5. Do exercise 7 below.

Some Solutions from In-Class Exercises:

1. We have already shown that a < b is Diophantine. Show that a = b, a < b, and a # b
are also Diophantine.

Solution: We showed a < b is Diophantine by rewriting it as a Diophantine expression,
namely
a<b <<= (Ex)(b—(a+1+4+z)=0).

We can do the same with a < b,

a<b < (Jx)(b—-(a+x)=0),



and a = b is already a Diophantine expression. For a # b, we can either rewrite a # b
explicitly as a Diophantine expression

a#b <= (3r)((a—0b)?—(z+1)=0),

or we can rewrite it as a combination of things we have already shown to be Diophan-
tine, together with operations under which Diophantine properties are closed; that is,
conjunction (and, A), disjunction (or, V), and existential quantification:

a#b < (a<bV b<a).

Note: Diophantine properties generally are not closed under negation (not, written
—). We will eventually prove this.

. Show the function f : N> — N, where f(a,b) is the remainder when a is divided by
b+ 1, is Diophantine, by showing that “c is the remainder when a is divided by b+ 1”
can be rewritten as a Diophantine expression.

Note: You do not have to do this explicitly; you can combine Diophantine prop-
erties using conjunction, disjunction, and existential quantification, as in our second
argument that a # b is a Diophantine property.

. Show that the Diophantine functions from N* to N are closed under addition; that is,
if f and g are Diophantine functions, then so is f + g.
. Show that the Diophantine functions from N to N are closed under composition.

Solution: By the definition of closed, this means we must show that if f and g are
Diophantine functions, so is their composition, f o g. Recall that (fog)(a) = f(g(a)).

Begin by assuming that f and g are Diophantine functions. That is f(a) = b and
g(a) = b are Diophantine properties. We must show that (fog)(a) = b, or f(g(a)) = b,
is a Diophantine property.

By changing the names of some parameters and using the fact that Diophantine prop-
erties are closed under conjunction, we can arrive at the Diophantine property

gla) =c & f(e) =b.

This is close to what we want — it implies that f(g(a)) = b — but it is not a property
of two numbers a and b, it is a property of three numbers a, b, and c.

We can rewrite f(g(a)) = b as a suitable combination of Diophantine properties by
using an existential quantifier:

flg(a)) =b <= (Fr) (9(a) =z & f(x) = ).

This shows “f(g(a)) = b” is a Diophantine property, which shows fog is a Diophantine
function, which is what we needed to show.



5. Show that if f: N2 - N, ¢g: N®> - N, and h : N> — N are Diophantine functions, so
is k : N> — N, where k is defined by

k(a,b,c) = f(h(a,b,c), g(a,b,c)).

Idea: This is another way of combining Diophantine functions using composition. We
can use the same trick as in the previous exercise, using one variable = for the value of
h(a,b,c) and a second variable y for the value of g(a,b, c).

6. State a more general form of the preceding exercise. You need not prove it — it should
be clear that pretty much the same proof works.

Solution: We want to say, loosely, that whenever we combine Diophantine functions
using composition we get another Diophantine function. To be more precise:

Suppose that h : N¥* — N is a Diophantine function, and ¢; : N* = N,..., g, : N* = N
are Diophantine functions. ( We do not assume that the value of g; depends on all its
arguments; for example, in the case n = 4, we could have g1 (a1, as, a3, as) = a3 + as.)

Then the composition h : N* — N defined by

h(ay,...,an) = flgi(ar, ... an),g2(a1, ... an), ..., grlas,...a,))
is also a Diophantine function.

7. Suppose that (a,b) expresses a Diophantine property of (a,b), and f : N> — Nis a
Diophantine function. Show that ¢(a, f(b,¢)) is a Diophantine property of (a, b, ¢).

Note: For example, let f(a,b) be the remainder when a is divided by b+ 1. We know

that f is a Diophantine function, and a # b is a Diophantine property. This exercise
claims that therefore

a# f(b;c),
or “the remainder when b is divided by ¢+ 1 is not a,’
(of the triple (a, b, c)).

?

is also a Diophantine property

8. State the most general form of the above exercise that you can. Again, you need not
prove it.
Solution: Suppose ¢(ay, ..., ax) is a Diophantine property of ay, ..., a, and f : N* —
N is a Diophantine function. Then

gO((ll, s 7ai—17f(b17 . -ubn)uai—i-la .- ‘ak)

(where there may be repetitions among the a; and by) is also a Diophantine property.

That is, if ¢(ay,...,ax) expresses a Diophantine property, we can replace any of the
free unknowns a; by an expression for a Diophantine function f(b;...,b,) of any un-
knowns by, ..., b, (which may include some of the a;), and the result still expresses a
Diophantine property.



Our textbook refers to an expression for a Diophantine function as a “Diophantine
term.” We could say that Diophantine properties are closed under substitution of
Diophantine terms.

Note: By applying this repeatedly, we could replace any number of the a; with Dio-
phantine terms, and still have a Diophantine property.



