
Math 17
Winter 2015

Wednesday, January 14

Lemma:1 If p is an odd prime, then there is a number b such that 0 < b < p and pb can be
written as the sum of four squares.

Proof: You proved this for homework. (Actually, you proved that pb can be written as the
sum of three squares, but by adding 02 you get the sum of four squares.)

Theorem (the Lagrange four square theorem): Every natural number can be written as the
sum of four squares.

Proof: You showed in homework that the theorem follows from the following proposition.

Proposition: Every odd prime can be written as the sum of four squares.

Proof (of the proposition): Let p be an odd prime, and choose b as in the lemma, with
0 < b < p and

x2
1 + x2

2 + x2
3 + x2

4 = pb.

We can choose the xi to all be nonnegative.

If b = 1 we are done. So suppose that b > 1. We will show that there is some c with
0 < c < b such that pc can be written as the sum of four squares.

Once we show this, we are done. (If c = 1, we have the result we want. If c > 1, we can
apply the same argument to find d with 0 < d < c such that pd can be written as the sum
of four squares. Continuing in this way, eventually we work our way down to getting p · 1
(that is, p) written as the sum of four squares.)

We will make use of a few key facts, mostly about congruence relations, stated on the
next page.

1A theorem or proposition is a significant result, a result we are interested in for its own sake. A lemma
is a result that is proved as one step in proving a theorem or proposition. A corollary is a result that follows
from a theorem or proposition; it may be called a corollary of that theorem. Lemmas generally don’t have
corollaries.
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1. We can think of x ≡ y mod b in several ways:

(a) x and y have the same remainder when divided by b;

(b) b|(x− y);

(c) y is obtained from x by adding a (possibly negative) multiple of b.

2. If
x1 ≡ y1 mod b & x2 ≡ y2 mod b & · · · & xn ≡ yn mod b

and P (x1, x2 . . . , xn) is any polynomial with integer coefficients, then

P (x1, x2 . . . , xn) ≡ P (y1, y2 . . . , yn) mod b.

(Since xi ≡ yi mod b, we can write yi = xi + kib. Therefore, replacing xi with yi

changes the value of the polynomial by adding some multiple of b; that is, it changes
it to something congruent modulo b to the original value,)

3. If b > 1, every natural number x is congruent modulo b to some number in the interval(
− b

2
,

b

2

]
. This is the number of smallest absolute value among all the numbers

congruent to x mod b. (We discussed this in class.)

4. The Euler four square identity:

(x2
1 + x2

2 + x2
3 + x2

4) · (y2
1 + y2

2 + y2
3 + y2

4) =

(x1y1 + x2y2 + x3y3 + x4y4)
2+

(x1y2 − x2y1 + x3y4 − x4y3)
2+

(x1y3 − x3y1 − x2y4 + x4y2)
2+

(x1y4 − x4y1 + x2y3 − x3y2)
2.

5. If p is prime and 1 < b < p, then pb is not a multiple of b2. Therefore, if

x2
1 + x2

2 + x2
3 + x2

4 = pb,

then

(a) It is not possible for every xi to be a multiple of b.

(b) It is not possible for every xi to have the form kb± b

2
.

(You can check that in either case, x2
1 + x2

2 + x2
3 + x2

4 would be a multiple of b2.)
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Now that we’ve stated these useful facts, we continue with the proof. Remember, we
have 1 < b < p and

x2
1 + x2

2 + x2
3 + x2

4 = pb,

and we must find c with 0 < c < b such that pc can be written as the sum of four squares.
Using fact (3) above, choose y1, y2, y3, y4 such that

− b

2
< yi ≤

b

2
& yi ≡ xi mod b.

Since
x2

1 + x2
2 + x2

3 + x2
4 ≡ 0 mod b,

by fact (2) above,
y2

1 + y2
2 + y2

3 + y2
4 ≡ 0 mod b.

That is, for some c, we have
y2

1 + y2
2 + y2

3 + y2
4 = cb.

We will show this is the c we are looking for.

It is clear that c ≥ 0. Because for every i we have |yi| ≤
b

2
, we also have

cb = y2
1 + y2

2 + y2
3 + y2

4 ≤
b2

4
+

b2

4
+

b2

4
+

b2

4
= b2,

so c ≤ b.
If c = 0, then y2

1 + y2
2 + y2

3 + y2
4 = 0, so yi = 0 for every i. Since yi ≡ xi mod b, this

means that every xi is a multiple of b. But this contradicts fact (5a). Therefore, 0 < c.
If c = b, then y2

1 + y2
2 + y2

3 + y2
4 has the maximum possible value. Therefore we must have

|yi| =
b

2
for every i. Since yi ≡ xi mod b, this means that every xi is of the form kb ± b

2
.

But this violates fact (5b). Therefore, c < b.
Now we have 0 < c < b. It remains only to show that pc can be written as the sum of

four squares.
To do this, we will use the Euler four square identity:

pc(b2) = (pb)(cb) =

(x2
1 + x2

2 + x2
3 + x2

4) · (y2
1 + y2

2 + y2
3 + y2

4) =

(x1y1 + x2y2 + x3y3 + x4y4)
2+

(x1y2 − x2y1 + x3y4 − x4y3)
2+

(x1y3 − x3y1 − x2y4 + x4y2)
2+

(x1y4 − x4y1 + x2y3 − x3y2)
2
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Consider the terms on the righthand side of this equation, and apply fact (3) above, and
the fact that xi ≡ yi mod b. For the first term, modulo b we have

(x1y1 + x2y2 + x3y3 + x4y4) ≡ (x1x1 + x2x2 + x3x3 + x4x4) = x2
1 + x2

2 + x2
3 + x2

4 = bp ≡ 0,

so (x1y1 + x2y2 + x3y3 + x4y4) is a multiple of b, and we can write

(x1y1 + x2y2 + x3y3 + x4y4) = z1b.

For the second term, modulo b we have

(x1y2 − x2y1 + x3y4 − x4y3) ≡ (x1x2 − x2x1 + x3x4 − x4x3) = 0,

so (x1y2 − x2y1 + x3y4 − x4y3) is a multiple of b, and we can write

(x1y2 − x2y1 + x3y4 − x4y3) = z2b.

Exactly the same reasoning applies to the third and fourth terms:

(x1y3 − x3y1 − x2y4 + x4y2) = z3b;

(x1y4 − x4y1 + x2y3 − x3y2) = z4b.

Plugging back in, we now have

pc(b2) = (z1b)
2 + (z2b)

2 + (z3b)
2 + (z4b)

2.

Dividing by b2 gives
pc = z2

1 + z2
2 + z2

3 + z2
4 .

This is what we needed to show.
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Definition: Let n and k be any natural numbers with k ≤ n. We define the binomial
coefficient (

n

k

)
(read “n choose k”) to be the number of k-element subsets of an n-element set. The termi-
nology “n choose k” reflects that we are counting how many ways to choose k objects from
a set of n objects (when order does not matter).

If you think about what happens when you expand out

(x + y)n = (x + y) (x + y) · · · (x + y),

you can convince yourself that the coefficient of the term xkyn−k is
(

n
k

)
. The terminology

“binomial coefficients” reflects that these are the coefficients we get when we raise a binomial
(a sum of two monomials) to a power.

Lemma: If 0 < k < n + 1, then(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.

(This is why the binomial coefficients are found in Pascal’s triangle.)

Proof: The k-element subsets of an (n+1)-element set {a1, a2, . . . , an, an+1} can be classified
into two classes.

1. The subsets that do not contain an+1 are k-element subsets of {a1, a2, . . . , an}. There
are

(
n
k

)
many of these.

2. The subsets that contain an+1 are (k− 1)-element subsets of {a1, a2, . . . , an} with an+1

added in. There are
(

n
k−1

)
many of these.

Therefore, the total number of k-element subsets is
(

n
k

)
+

(
n

k−1

)
.

Theorem: For all natural numbers n and k ≤ n, we have(
n

k

)
=

n!

k!(n− k)!
.

Proof: One way to prove this is by combinatorial reasoning. We will prove it by induction.
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Digresssion (proof by induction): To prove that some property ϕ(n) holds for every natural
number n by induction, you need to do two things.

1. Prove ϕ(0). This is called the base case.

2. Assume ϕ(n) (this is called the inductive hypothesis) and prove ϕ(n + 1).

Why this works: Let

X = {n ∈ N | ϕ(n)}.

We want to show that X = N. We can do this if we show two things.

1. 0 ∈ X.

2. X is closed under adding 1, that is, if we add 1 to some number in X we get another
number in X.

To show 0 ∈ X, we prove ϕ(0). This is the base case of proof by induction.
To show X is closed under adding 1, we assume that n is some number in X, and show

that n + 1 is also a number in X. That is, we assume ϕ(n) and show ϕ(n + 1). This is the
inductive step.

An important note here: The inductive step can be confusing when you first start doing
proofs by induction. You are trying to prove ϕ(n), so isn’t it circular to assume ϕ(n)? It is
not, and we can see this if we pay attention to what we mean. You are trying to prove that
ϕ(n) is true for all n. You are assuming that n is some particular number for which ϕ is
true. There is no problem here; there is at least one such number, because you just proved
(in the base case) that ϕ is true of 0. Then you prove, from this assumption, that n + 1 is
another number for which ϕ is true.

If there is more than one variable floating around, we may say this is proof by induction
“on n.”

In our case, the property ϕ(n) we want to prove, by induction on n, is

(∀k ≤ n)

((
n

k

)
=

n!

k!(n− k)!

)
.
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Proof (continued): We prove

(∀k ≤ n)

((
n

k

)
=

n!

k!(n− k)!

)
by induction on n.

Before starting, we note that an n-element set has only one 0-element subset (the empty
set), and only one n-element subset (the entire set), so

(
n
0

)
=

(
n
n

)
= 1. We also note that, by

convention, we define 0! = 1.

Base Case: For n = 0, the only natural number k ≤ n is k = 0, so we must show that(
0

0

)
=

0!

0! 0!
.

Since each side of this equation equals 1, this is true.

Inductive Step: Assume, as inductive hypothesis, that

(∀k ≤ n)

((
n

k

)
=

n!

k!(n− k)!

)
.

We must show that

(∀k ≤ n + 1)

((
n + 1

k

)
=

(n + 1)!

k!((n + 1)− k)!

)
.

For k = 0 we must show that((
n + 1

0

)
=

(n + 1)!

0!((n + 1)− 0)!
=

(n + 1)!

1 · (n + 1)!
.

)
.

Since each side of this equation equals 1, this is true.
For k = n + 1, we must show that((

n + 1

n + 1

)
=

(n + 1)!

(n + 1)!((n + 1)− (n + 1)!
=

(n + 1)!

(n + 1)!0!
=

(n + 1)!

(n + 1)! · 1

)
.

Since each side of this equation equals 1, this is true.
For 0 < k < n + 1, we must show that((

n + 1

k

)
=

(n + 1)!

k!((n + 1)− k)!

)
.

To do this we use the lemma and the inductive hypothesis. By the lemma, we have(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.
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By the inductive hypothesis, we can replace
(

n
k−1

)
with

n!

(k − 1)! · (n− (k − 1))!
and

(
n
k

)
with

n!

k! · (n− k)!
, to get

(
n + 1

k

)
=

n!

(k − 1)! · (n− (k − 1))!
+

n!

k! · (n− k)!
.

Now we do some algebraic manipulation to get what we want.

n!

(k − 1)! · (n− (k − 1))!
+

n!

k! · (n− k)!
=

k · n!

(k)! · (n− (k − 1))!
+

(n− (k − 1))n!

k! · (n− (k − 1))!
=

k · n! + (n− (k − 1))n!

k! · (n− (k − 1))!
=

n!(n + 1)

k!((n + 1)− k)!
=

(n + 1)!

k!((n + 1)− k)!
.
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