Math 17
Winter 2015
Wednesday, January 14

Lemma: ${ }^{1}$ If p is an odd prime, then there is a number b such that $0<b<p$ and $p b$ can be written as the sum of four squares.

Proof: You proved this for homework. (Actually, you proved that $p b$ can be written as the sum of three squares, but by adding 0^{2} you get the sum of four squares.)

Theorem (the Lagrange four square theorem): Every natural number can be written as the sum of four squares.

Proof: You showed in homework that the theorem follows from the following proposition.
Proposition: Every odd prime can be written as the sum of four squares.
Proof (of the proposition): Let p be an odd prime, and choose b as in the lemma, with $0<b<p$ and

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=p b
$$

We can choose the x_{i} to all be nonnegative.
If $b=1$ we are done. So suppose that $b>1$. We will show that there is some c with $0<c<b$ such that $p c$ can be written as the sum of four squares.

Once we show this, we are done. (If $c=1$, we have the result we want. If $c>1$, we can apply the same argument to find d with $0<d<c$ such that $p d$ can be written as the sum of four squares. Continuing in this way, eventually we work our way down to getting $p \cdot 1$ (that is, p) written as the sum of four squares.)

We will make use of a few key facts, mostly about congruence relations, stated on the next page.

[^0]1. We can think of $x \equiv y \bmod b$ in several ways:
(a) x and y have the same remainder when divided by b;
(b) $b \mid(x-y)$;
(c) y is obtained from x by adding a (possibly negative) multiple of b.
2. If

$$
x_{1} \equiv y_{1} \quad \bmod b \quad \& \quad x_{2} \equiv y_{2} \quad \bmod b \quad \& \quad \cdots \quad \& \quad x_{n} \equiv y_{n} \quad \bmod b
$$ and $P\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is any polynomial with integer coefficients, then

$$
P\left(x_{1}, x_{2} \ldots, x_{n}\right) \equiv P\left(y_{1}, y_{2} \ldots, y_{n}\right) \quad \bmod b
$$

(Since $x_{i} \equiv y_{i} \bmod b$, we can write $y_{i}=x_{i}+k_{i} b$. Therefore, replacing x_{i} with y_{i} changes the value of the polynomial by adding some multiple of b; that is, it changes it to something congruent modulo b to the original value,)
3. If $b>1$, every natural number x is congruent modulo b to some number in the interval $\left(-\frac{b}{2}, \frac{b}{2}\right]$. This is the number of smallest absolute value among all the numbers congruent to $x \bmod b$. (We discussed this in class.)
4. The Euler four square identity:

$$
\begin{gathered}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)= \\
\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)^{2}+ \\
\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2}+ \\
\left(x_{1} y_{3}-x_{3} y_{1}-x_{2} y_{4}+x_{4} y_{2}\right)^{2}+ \\
\left(x_{1} y_{4}-x_{4} y_{1}+x_{2} y_{3}-x_{3} y_{2}\right)^{2} .
\end{gathered}
$$

5. If p is prime and $1<b<p$, then $p b$ is not a multiple of b^{2}. Therefore, if

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=p b
$$

then
(a) It is not possible for every x_{i} to be a multiple of b.
(b) It is not possible for every x_{i} to have the form $k b \pm \frac{b}{2}$.
(You can check that in either case, $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ would be a multiple of b^{2}.)

Now that we've stated these useful facts, we continue with the proof. Remember, we have $1<b<p$ and

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=p b
$$

and we must find c with $0<c<b$ such that $p c$ can be written as the sum of four squares.
Using fact (3) above, choose $y_{1}, y_{2}, y_{3}, y_{4}$ such that

$$
-\frac{b}{2}<y_{i} \leq \frac{b}{2} \quad \& \quad y_{i} \equiv x_{i} \quad \bmod b
$$

Since

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 0 \quad \bmod b,
$$

by fact (2) above,

$$
y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2} \equiv 0 \quad \bmod b .
$$

That is, for some c, we have

$$
y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=c b .
$$

We will show this is the c we are looking for.
It is clear that $c \geq 0$. Because for every i we have $\left|y_{i}\right| \leq \frac{b}{2}$, we also have

$$
c b=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2} \leq \frac{b^{2}}{4}+\frac{b^{2}}{4}+\frac{b^{2}}{4}+\frac{b^{2}}{4}=b^{2},
$$

so $c \leq b$.
If $c=0$, then $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=0$, so $y_{i}=0$ for every i. Since $y_{i} \equiv x_{i} \bmod b$, this means that every x_{i} is a multiple of b. But this contradicts fact (5a). Therefore, $0<c$.

If $c=b$, then $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}$ has the maximum possible value. Therefore we must have $\left|y_{i}\right|=\frac{b}{2}$ for every i. Since $y_{i} \equiv x_{i} \bmod b$, this means that every x_{i} is of the form $k b \pm \frac{b}{2}$. But this violates fact (5b). Therefore, $c<b$.

Now we have $0<c<b$. It remains only to show that $p c$ can be written as the sum of four squares.

To do this, we will use the Euler four square identity:

$$
\begin{gathered}
p c\left(b^{2}\right)=(p b)(c b)= \\
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right) \cdot\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)= \\
\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)^{2}+ \\
\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2}+ \\
\left(x_{1} y_{3}-x_{3} y_{1}-x_{2} y_{4}+x_{4} y_{2}\right)^{2}+ \\
\left(x_{1} y_{4}-x_{4} y_{1}+x_{2} y_{3}-x_{3} y_{2}\right)^{2}
\end{gathered}
$$

Consider the terms on the righthand side of this equation, and apply fact (3) above, and the fact that $x_{i} \equiv y_{i} \bmod b$. For the first term, modulo b we have

$$
\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right) \equiv\left(x_{1} x_{1}+x_{2} x_{2}+x_{3} x_{3}+x_{4} x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=b p \equiv 0
$$

so $\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)$ is a multiple of b, and we can write

$$
\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)=z_{1} b .
$$

For the second term, modulo b we have

$$
\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right) \equiv\left(x_{1} x_{2}-x_{2} x_{1}+x_{3} x_{4}-x_{4} x_{3}\right)=0
$$

so $\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)$ is a multiple of b, and we can write

$$
\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)=z_{2} b .
$$

Exactly the same reasoning applies to the third and fourth terms:

$$
\begin{aligned}
& \left(x_{1} y_{3}-x_{3} y_{1}-x_{2} y_{4}+x_{4} y_{2}\right)=z_{3} b ; \\
& \left(x_{1} y_{4}-x_{4} y_{1}+x_{2} y_{3}-x_{3} y_{2}\right)=z_{4} b .
\end{aligned}
$$

Plugging back in, we now have

$$
p c\left(b^{2}\right)=\left(z_{1} b\right)^{2}+\left(z_{2} b\right)^{2}+\left(z_{3} b\right)^{2}+\left(z_{4} b\right)^{2} .
$$

Dividing by b^{2} gives

$$
p c=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2} .
$$

This is what we needed to show.

Definition: Let n and k be any natural numbers with $k \leq n$. We define the binomial coefficient

$$
\binom{n}{k}
$$

(read " n choose k ") to be the number of k-element subsets of an n-element set. The terminology " n choose k " reflects that we are counting how many ways to choose k objects from a set of n objects (when order does not matter).

If you think about what happens when you expand out

$$
(x+y)^{n}=(x+y)(x+y) \cdots(x+y)
$$

you can convince yourself that the coefficient of the term $x^{k} y^{n-k}$ is $\binom{n}{k}$. The terminology "binomial coefficients" reflects that these are the coefficients we get when we raise a binomial (a sum of two monomials) to a power.

Lemma: If $0<k<n+1$, then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

(This is why the binomial coefficients are found in Pascal's triangle.)
Proof: The k-element subsets of an $(n+1)$-element set $\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}\right\}$ can be classified into two classes.

1. The subsets that do not contain a_{n+1} are k-element subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. There are $\binom{n}{k}$ many of these.
2. The subsets that contain a_{n+1} are $(k-1)$-element subsets of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with a_{n+1} added in. There are $\binom{n}{k-1}$ many of these.

Therefore, the total number of k-element subsets is $\binom{n}{k}+\binom{n}{k-1}$.
Theorem: For all natural numbers n and $k \leq n$, we have

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Proof: One way to prove this is by combinatorial reasoning. We will prove it by induction.

Digresssion (proof by induction): To prove that some property $\varphi(n)$ holds for every natural number n by induction, you need to do two things.

1. Prove $\varphi(0)$. This is called the base case.
2. Assume $\varphi(n)$ (this is called the inductive hypothesis) and prove $\varphi(n+1)$.

Why this works: Let

$$
X=\{n \in \mathbb{N} \mid \varphi(n)\}
$$

We want to show that $X=\mathbb{N}$. We can do this if we show two things.

1. $0 \in X$.
2. X is closed under adding 1 , that is, if we add 1 to some number in X we get another number in X.

To show $0 \in X$, we prove $\varphi(0)$. This is the base case of proof by induction.
To show X is closed under adding 1 , we assume that n is some number in X, and show that $n+1$ is also a number in X. That is, we assume $\varphi(n)$ and show $\varphi(n+1)$. This is the inductive step.

An important note here: The inductive step can be confusing when you first start doing proofs by induction. You are trying to prove $\varphi(n)$, so isn't it circular to assume $\varphi(n)$? It is not, and we can see this if we pay attention to what we mean. You are trying to prove that $\varphi(n)$ is true for all n. You are assuming that n is some particular number for which φ is true. There is no problem here; there is at least one such number, because you just proved (in the base case) that φ is true of 0 . Then you prove, from this assumption, that $n+1$ is another number for which φ is true.

If there is more than one variable floating around, we may say this is proof by induction "on n."

In our case, the property $\varphi(n)$ we want to prove, by induction on n, is

$$
(\forall k \leq n)\left(\binom{n}{k}=\frac{n!}{k!(n-k)!}\right)
$$

Proof (continued): We prove

$$
(\forall k \leq n)\left(\binom{n}{k}=\frac{n!}{k!(n-k)!}\right)
$$

by induction on n.
Before starting, we note that an n-element set has only one 0 -element subset (the empty set), and only one n-element subset (the entire set), so $\binom{n}{0}=\binom{n}{n}=1$. We also note that, by convention, we define $0!=1$.

Base Case: For $n=0$, the only natural number $k \leq n$ is $k=0$, so we must show that

$$
\binom{0}{0}=\frac{0!}{0!0!} .
$$

Since each side of this equation equals 1 , this is true.
Inductive Step: Assume, as inductive hypothesis, that

$$
(\forall k \leq n)\left(\binom{n}{k}=\frac{n!}{k!(n-k)!}\right) .
$$

We must show that

$$
(\forall k \leq n+1)\left(\binom{n+1}{k}=\frac{(n+1)!}{k!((n+1)-k)!}\right) .
$$

For $k=0$ we must show that

$$
\left(\binom{n+1}{0}=\frac{(n+1)!}{0!((n+1)-0)!}=\frac{(n+1)!}{1 \cdot(n+1)!} .\right) .
$$

Since each side of this equation equals 1 , this is true.
For $k=n+1$, we must show that

$$
\left(\binom{n+1}{n+1}=\frac{(n+1)!}{(n+1)!((n+1)-(n+1)!}=\frac{(n+1)!}{(n+1)!0!}=\frac{(n+1)!}{(n+1)!\cdot 1}\right) .
$$

Since each side of this equation equals 1 , this is true.
For $0<k<n+1$, we must show that

$$
\left(\binom{n+1}{k}=\frac{(n+1)!}{k!((n+1)-k)!}\right) .
$$

To do this we use the lemma and the inductive hypothesis. By the lemma, we have

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

By the inductive hypothesis, we can replace $\binom{n}{k-1}$ with $\frac{n!}{(k-1)!\cdot(n-(k-1))!}$ and $\binom{n}{k}$ with $\frac{n!}{k!\cdot(n-k)!}$, to get

$$
\binom{n+1}{k}=\frac{n!}{(k-1)!\cdot(n-(k-1))!}+\frac{n!}{k!\cdot(n-k)!} .
$$

Now we do some algebraic manipulation to get what we want.

$$
\begin{gathered}
\frac{n!}{(k-1)!\cdot(n-(k-1))!}+\frac{n!}{k!\cdot(n-k)!}=\frac{k \cdot n!}{(k)!\cdot(n-(k-1))!}+\frac{(n-(k-1)) n!}{k!\cdot(n-(k-1))!}= \\
\frac{k \cdot n!+(n-(k-1)) n!}{k!\cdot(n-(k-1))!}=\frac{n!(n+1)}{k!((n+1)-k)!}=\frac{(n+1)!}{k!((n+1)-k)!} .
\end{gathered}
$$

[^0]: ${ }^{1} \mathrm{~A}$ theorem or proposition is a significant result, a result we are interested in for its own sake. A lemma is a result that is proved as one step in proving a theorem or proposition. A corollary is a result that follows from a theorem or proposition; it may be called a corollary of that theorem. Lemmas generally don't have corollaries.

