Dartmouth College Mathematics 17

Assignment 6 due Wednesday, February 15

- 1. Using the fundamental theorem for finite abelian groups, list a complete set of nonisomorphic abelian groups of order 7^311^4 .
- 2. For $n \ge 1$, U_n is a finite abelian group, For $5 \le n \le 15$, use your knowledge of these groups to characterize them as in the fundamental theorem. For example, U_3 is a group of order 2, a prime, so U_3 is a cyclic group of order 2, that is $U_3 \cong \mathbb{Z}_2$. The group U_8 is an abelian group of order 4, so by the fundamental theorem isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_2$ or to \mathbb{Z}_4 . We easily check for all $a \in U_8$ that $a^2 = 1$, so U_8 is not cyclic, and so $U_8 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

This next series of questions concerns finding points of intersection of curves in affine and projective plane $(\mathbb{A}^2(F) \text{ or } \mathbb{P}^2(F))$ where $F = \mathbb{R}$ or \mathbb{C}). Recall the affine plane $\mathbb{A}^2(\mathbb{R})$ is just a fancy way to say \mathbb{R}^2 . Points in the affine plane have coordinates (x, y)while points in the projective plane have coordinates [x, y, z], and we identify points $(x, y) \in \mathbb{A}^2$ with the point $[x, y, 1] \in \mathbb{P}^2$. The points of \mathbb{P}^2 not coming from \mathbb{A}^2 have the form [x, y, 0] where x, y are not both zero.

- 3. Consider the parabola $y x^2 = 0$ and the line x = 2.
 - (a) Find their point(s) of intersection in $\mathbb{A}^2(\mathbb{R})$.
 - (b) Now we "homogenize" the affine curves and consider the projective curves $yz x^2 = 0$ and x 2z = 0. Note that setting z = 1 produces (dehomogenizes) the projective curves producing the affine ones. Find the points of intersection in $\mathbb{P}^2(\mathbb{R})$. You should at least recover the affine points.
- 4. Consider the affine curves x + y + 2 = 0 and $x^2 + y^2 = 1$.
 - (a) Find all points of intersection in $\mathbb{A}^2(\mathbb{R})$, in $\mathbb{A}^2(\mathbb{C})$.
 - (b) Now consider their projective counterparts: x + y + 2z = 0 and $x^2 + y^2 = z^2$. Determine any extra solutions that appear in $\mathbb{P}^2(\mathbb{R})$ or $\mathbb{P}^2(\mathbb{C})$ that did not come from affine points, or explain why there are none.
- 5. The vertical lines x = 2 and x = 3 do not intersect in the affine plane. Find the point of intersection of their projective counterparts: x = 2z, x = 3z.
- 6. Find the point of intersection of the projective lines y = mx + bz and y = mx + b'z if $b \neq b'$.