Dartmouth College
 Mathematics 17

Assignment 6
due Wednesday, February 15

1. Using the fundamental theorem for finite abelian groups, list a complete set of nonisomorphic abelian groups of order $7^{3} 11^{4}$.
2. For $n \geq 1, U_{n}$ is a finite abelian group, For $5 \leq n \leq 15$, use your knowledge of these groups to characterize them as in the fundamental theorem. For example, U_{3} is a group of order 2 , a prime, so U_{3} is a cyclic group of order 2 , that is $U_{3} \cong \mathbb{Z}_{2}$. The group U_{8} is an abelian group of order 4, so by the fundamental theorem isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or to \mathbb{Z}_{4}. We easily check for all $a \in U_{8}$ that $a^{2}=1$, so U_{8} is not cyclic, and so $U_{8} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

This next series of questions concerns finding points of intersection of curves in affine and projective plane $\left(\mathbb{A}^{2}(F)\right.$ or $\mathbb{P}^{2}(F)$ where $F=\mathbb{R}$ or $\left.\mathbb{C}\right)$. Recall the affine plane $\mathbb{A}^{2}(\mathbb{R})$ is just a fancy way to say \mathbb{R}^{2}. Points in the affine plane have coordinates (x, y) while points in the projective plane have coordinates $[x, y, z]$, and we identify points $(x, y) \in \mathbb{A}^{2}$ with the point $[x, y, 1] \in \mathbb{P}^{2}$. The points of \mathbb{P}^{2} not coming from \mathbb{A}^{2} have the form $[x, y, 0]$ where x, y are not both zero.
3. Consider the parabola $y-x^{2}=0$ and the line $x=2$.
(a) Find their point(s) of intersection in $\mathbb{A}^{2}(\mathbb{R})$.
(b) Now we "homogenize" the affine curves and consider the projective curves $y z-$ $x^{2}=0$ and $x-2 z=0$. Note that setting $z=1$ produces (dehomogenizes) the projective curves producing the affine ones. Find the points of intersection in $\mathbb{P}^{2}(\mathbb{R})$. You should at least recover the affine points.
4. Consider the affine curves $x+y+2=0$ and $x^{2}+y^{2}=1$.
(a) Find all points of intersection in $\mathbb{A}^{2}(\mathbb{R})$, in $\mathbb{A}^{2}(\mathbb{C})$.
(b) Now consider their projective counterparts: $x+y+2 z=0$ and $x^{2}+y^{2}=z^{2}$. Determine any extra solutions that appear in $\mathbb{P}^{2}(\mathbb{R})$ or $\mathbb{P}^{2}(\mathbb{C})$ that did not come from affine points, or explain why there are none.
5. The vertical lines $x=2$ and $x=3$ do not intersect in the affine plane. Find the point of intersection of their projective counterparts: $x=2 z, x=3 z$.
6. Find the point of intersection of the projective lines $y=m x+b z$ and $y=m x+b^{\prime} z$ if $b \neq b^{\prime}$.

