Dartmouth College Mathematics 17

Assignment 5 due Wednesday, February 8

1. We investigate some general classes of groups. The symmetric group is defined as the set of permutations of the set $\{1, 2, ..., n\}$, that is, as a set

 $S_n = \{f : \{1, 2, ..., n\} \to \{1, 2, ..., n\} \mid f \text{ is a bijection}\}.$ The group operation is function composition, so that the group product f * g is just the composite function $f \circ g$. The identity is the function f so that f(k) = k for all $k, 1 \leq k \leq n$, and any given function has an inverse precisely because it is one-to-one and onto. Convince yourself that the order of $S_n, |S_n|$, is n!.

For concreteness, we shall consider the case of n = 3. While a bit cumbersome, we will denote an element in S_3 by $f = \begin{bmatrix} 1 & 2 & 3 \\ a & b & c \end{bmatrix}$ the function f defined by f(1) = a, f(2) = b, f(3) = c. The group operation is function composition, so f * g is the function whose action on k is f(g(k)). In the permutation notation, this translates as follows:

$$f = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, g = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \mapsto fg = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix},$$

that is

$$f(g(1)) = f(2) = 1;$$
 $f(g(2)) = f(1) = 3;$ $f(g(3)) = f(3) = 2.$

- (a) Let $\sigma = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$ and $\tau = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$. Compute $\sigma, \sigma^2, \sigma^3, \tau, \tau^2, \tau^3, \sigma\tau, \sigma^2\tau$.
- (b) Fill in the Cayley table for S_3 using the elements listed in the first row or column. For example, don't enter $\tau \sigma$:

×	e	σ	σ^2	au	$\sigma \tau$	$\sigma^2 \tau$
e						
σ						
σ^2						
au						
$\sigma \tau$						
$\sigma^2 \tau$						

(c) Determine whether S_3 is abelian.

2. The symmetries of a triangle for a finite group called D_3 . Consider two basic symmetries of a an equilateral triangle, the first a counterclockwise rotation by 120 degrees (denoted R) and the second a flip (denoted F) about a vertical axis through the vertex labeled 1.

We compose like in function composition, so that RF means first act by F, then R:

- (a) Compute $R, R^2, R^3, F, F^2, F^3, RF, R^2F$.
- (b) Fill in the Cayley table for D_3 using the elements listed along the first row or column. For example, don't enter FR:

×	e	R	R^2	F	RF	R^2F
e						
R						
R^2						
F						
RF						
R^2F						

(c) Notice that each symmetry can be thought of as a permutation of the three vertices. If we regard the numbers marking the vertices of the left-handle triangle

as positions, the *R* can be described as the permutation $R = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$, and $F = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$. Describe R^2 , *F*, *RF*, R^2F .

- 3. Show that D_3 is isomorphic to S_3 ; both are nonabelian groups of order 6. Now find two cyclic groups of order 6, one additive and one multiplicative and show they are isomorphic.
- 4. RSA, take two. In this problem, we use a 27-letter alphabet with $A \leftrightarrow 0, B \leftrightarrow 1, \ldots, Z \leftrightarrow 25$, space $\leftrightarrow 26$.

We shall convert between alphabet and numeric plaintext messages by a common scheme: encoding as a base 27 number with a certain block size, in our case 5. We do this as follows: Suppose we want to convert the message 'Groups are fun'.

First we break up our plaintext message into blocks of length 5, padding the last block if necessary: 'Group' 's are' ' funX'. Note we will not distinguish between upper and lower case, but this would easily be done by expanding the size of our alphabet.

'Group' $\mapsto 06, 17, 14, 20, 15$; 's are' $\mapsto 18, 26, 00, 17, 04$; 'funX' $\mapsto 26, 05, 20, 13, 23$, where the numbers represent the base-27 digits. We now encode these as base 27 numbers:

 $\text{`Group'} \mapsto 06, 17, 14, 20, 15 \mapsto 27^4(06) + 27^3(17) + 27^2(14) + 27^1(20) + 27^0(15) = 3534018 \\ \text{`s are'} \mapsto 18, 26, 00, 17, 04 \mapsto 27^4(18) + 27^3(26) + 27^2(00) + 27^1(17) + 27^0(15) = 10078170 \\ \text{`funX'} \mapsto 26, 05, 20, 13, 23 \mapsto 27^4(26) + 27^3(05) + 27^2(20) + 27^1(13) + 27^0(23) = 13930835$

Let's choose primes p and q, so that n = pq = 59753237. We compute $\phi(n) = (p-1)(q-1) = 59737740$. I choose a common encryption exponent $e = 2^{16} + 1 = 65537$ (the last known Fermat prime).

- (a) Find the primes p and q; this is not necessary to break the code, but reinforces that knowing $\phi(n)$ is equivalent to factoring n.
- (b) Find my decryption exponent.
- (c) Decrypt the message consisting of two blocks of numerical ciphertext, i.e., $C = P^e \pmod{n}$: 10881312 29883226.

The following Mathematica functions (note the syntax) will be of use:

- PowerMod[a,k,n] Computes $a^k \pmod{n}$
- ExtendedGCD[a,n] Computes $\{d, \{u, v\}\}$ where $d = \gcd(a, n) = au + nv$. You can do this via WolframAlpha (http://www.wolframalpha.com/)

×	e	σ	σ^2	au	$\sigma \tau$	$\sigma^2 au$
e						
σ						
σ^2						
au						
$\sigma \tau$						
$\sigma^2 au$						

×	e	R	R^2	F	RF	R^2F
e						
R						
R^2						
F						
RF						
R^2F	7					