Dartmouth College
 Mathematics 17

Assignment 5
due Wednesday, February 8

1. We investigate some general classes of groups. The symmetric group is defined as the set of permutations of the set $\{1,2, \ldots, n\}$, that is, as a set
$S_{n}=\{f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\} \mid f$ is a bijection $\}$. . The group operation is function composition, so that the group product $f * g$ is just the composite function $f \circ g$. The identity is the function f so that $f(k)=k$ for all $k, 1 \leq k \leq n$, and any given function has an inverse precisely because it is one-to-one and onto. Convince yourself that the order of $S_{n},\left|S_{n}\right|$, is n !.
For concreteness, we shall consider the case of $n=3$. While a bit cumbersome, we will denote an element in S_{3} by $f=\left[\begin{array}{lll}1 & 2 & 3 \\ a & b & c\end{array}\right]$ the function f defined by $f(1)=a, f(2)=b$, $f(3)=c$. The group operation is function composition, so $f * g$ is the function whose action on k is $f(g(k))$. In the permutation notation, this translates as follows:

$$
f=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right], g=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right] \mapsto f g=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right],
$$

that is

$$
f(g(1))=f(2)=1 ; \quad f(g(2))=f(1)=3 ; \quad f(g(3))=f(3)=2 .
$$

(a) Let $\sigma=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$ and $\tau=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$. Compute $\sigma, \sigma^{2}, \sigma^{3}, \tau, \tau^{2}, \tau^{3}, \sigma \tau, \sigma^{2} \tau$.
(b) Fill in the Cayley table for S_{3} using the elements listed in the first row or column. For example, don't enter $\tau \sigma$:

\times	e	σ	σ^{2}	τ	$\sigma \tau$	$\sigma^{2} \tau$
e						
σ						
σ^{2}						
τ						
$\sigma \tau$						
$\sigma^{2} \tau$						

(c) Determine whether S_{3} is abelian.
2. The symmetries of a triangle for a finite group called D_{3}. Consider two basic symmetries of a an equilateral triangle, the first a counterclockwise rotation by 120 degrees (denoted R) and the second a flip (denoted F) about a vertical axis through the vertex labeled 1.

We compose like in function composition, so that $R F$ means first act by F, then R :

(a) Compute $R, R^{2}, R^{3}, F, F^{2}, F^{3}, R F, R^{2} F$.
(b) Fill in the Cayley table for D_{3} using the elements listed along the first row or column. For example, don't enter $F R$:

\times	e	R	R^{2}	F	$R F$	$R^{2} F$
e						
R						
R^{2}						
F						
$R F$						
$R^{2} F$						

(c) Notice that each symmetry can be thought of as a permutation of the three vertices. If we regard the numbers marking the vertices of the left-handle triangle
as positions, the R can be described as the permutation $R=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right]$, and $F=$ $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]$. Describe $R^{2}, F, R F, R^{2} F$.
3. Show that D_{3} is isomorphic to S_{3}; both are nonabelian groups of order 6 . Now find two cyclic groups of order 6 , one additive and one multiplicative and show they are isomorphic.
4. RSA, take two. In this problem, we use a 27-letter alphabet with $A \leftrightarrow 0, B \leftrightarrow 1, \ldots$, $Z \leftrightarrow 25$, space $\leftrightarrow 26$.
We shall convert between alphabet and numeric plaintext messages by a common scheme: encoding as a base 27 number with a certain block size, in our case 5 . We do this as follows: Suppose we want to convert the message 'Groups are fun'.
First we break up our plaintext message into blocks of length 5, padding the last block if necessary: 'Group' 's are' ' funX'. Note we will not distinguish between upper and lower case, but this would easily be done by expanding the size of our alphabet.
'Group' $\mapsto 06,17,14,20,15$; 's are' $\mapsto 18,26,00,17,04$; ' funX' $\mapsto 26,05,20,13,23$, where the numbers represent the base- 27 digits. We now encode these as base 27 numbers:

$$
\begin{aligned}
\text { 'Group' } & \mapsto 06,17,14,20,15 \mapsto 27^{4}(06)+27^{3}(17)+27^{2}(14)+27^{1}(20)+27^{0}(15)=3534018 \\
\text { 's are' } & \mapsto 18,26,00,17,04 \mapsto 27^{4}(18)+27^{3}(26)+27^{2}(00)+27^{1}(17)+27^{0}(15)=10078170 \\
\text { 'funX' } & \mapsto 26,05,20,13,23 \mapsto 27^{4}(26)+27^{3}(05)+27^{2}(20)+27^{1}(13)+27^{0}(23)=13930835
\end{aligned}
$$

Let's choose primes p and q, so that $n=p q=59753237$. We compute $\phi(n)=$ $(p-1)(q-1)=59737740$. I choose a common encryption exponent $e=2^{16}+1=65537$ (the last known Fermat prime).
(a) Find the primes p and q; this is not necessary to break the code, but reinforces that knowing $\phi(n)$ is equivalent to factoring n.
(b) Find my decryption exponent.
(c) Decrypt the message consisting of two blocks of numerical ciphertext, i.e., $C=P^{e}(\bmod n): 10881312 \quad 29883226$.

The following Mathematica functions (note the syntax) will be of use:

- PowerMod $[\mathrm{a}, \mathrm{k}, \mathrm{n}]$ Computes $a^{k}(\bmod n)$
- ExtendedGCD $[\mathrm{a}, \mathrm{n}]$ Computes $\{d,\{u, v\}\}$ where $d=\operatorname{gcd}(a, n)=a u+n v$. You can do this via WolframAlpha (http://www.wolframalpha.com/)

