Dartmouth College
 Mathematics 17

Assignment 4
due Wednesday, February 1

1. Let's consider a special case of the Chinese Remainder Theorem (CRT). Let $m, n>1$ be coprime integers, and let a, b be arbitrary integers. Then the system of congruences:

$$
\begin{array}{ll}
x \equiv a & (\bmod m) \\
x \equiv b & (\bmod n)
\end{array}
$$

has a unique solution modulo $m n$.
(a) Give a proof of the CRT using the following generous hint. Since $\operatorname{gcd}(m, n)=1$, Bezout says there exists $u, v \in \mathbb{Z}$ so that $m u+n v=1$. Show that the number $b m u+a n v$ is a solution to the system, and then prove it is unique modulo $m n$.
(b) Explain how to use this version of the CRT to solve a system $x \equiv a(\bmod m)$, $\equiv b(\bmod n), x \equiv c(\bmod \ell)$ where $m, n, \ell>1$ are integers which are coprime in pairs.
(c) Solve the system $x \equiv 2(\bmod 15), x \equiv 3(\bmod 7)$ using the CRT.
2. This problem focuses on two means to compute the least non-negative residue of 5^{1030} $(\bmod 153)$ in an efficient manner.
(a) In this first approach, use the fact that $153=9 \cdot 17$ together with the CRT and Euler's theorem, to find the least non-negative residue.
(b) Use the method of fast exponentiation described in class (via the binary expansion of 1030) to compute this residue.
3. Recall that the Euler phi-function, $\phi(n)$, is defined by: $\phi(n)=\left|U_{n}\right|=\#\{k \mid 1 \leq k \leq n$ with $\operatorname{gcd}(k, n)=1\}$ We have observed that for a prime $p, \phi(p)=p-1$.
(a) Let p be a prime. Determine the value of $\phi\left(p^{r}\right)$ for any positive integer r. Hint: It may be easier to count the number of elements of $a \in \mathbb{Z}_{p^{r}}$ which are not relatively prime to p^{r} and use that to determine the value of the function. Of course be sure to check your answer against a few examples you can compute by hand.
(b) It is easy to show that in general $\phi(m n) \neq \phi(m) \phi(n)$, but what is remarkable is the when $\operatorname{gcd}(m, n)=1, \phi(m n)=\phi(m) \phi(n)$. The function ϕ is an example of a multiplicative function in number theory. Perhaps more surprising is that this is another consequence of the CRT. Give a proof that ϕ is multiplicative using the following idea: Let $\operatorname{gcd}(m, n)=1$. Show that there is a bijection between the
sets: $U_{m n}$ and $U_{m} \times U_{n}$ (ordered pairs (a, b) with $a \in U_{m}, b \in U_{n}$. Let the map $F: U_{m n} \rightarrow U_{m} \times U_{n}$ be given by $F\left([a]_{m n}\right)=\left([a]_{m},[a]_{n}\right)$. You need to show this map is well-defined, one-to-one, and onto. Then deduce the result.

Some of these words may be new to you, so here are some definitions.

- We have encountered the term well-defined before. In this context it means that if $[a]_{m n}=[b]_{m n}$, then $F([a])=F([b])$.
- A map is one-to-one (injective) if $F([a])=F([b])$ implies $[a]_{m n}=[b]_{m n}$.
- A map is onto (surjective) if given $\left([b]_{m},[c]_{n}\right) \in U_{m} \times U_{n}$, there exists $[a]_{m n} \in$ $U_{m n}$ so that $F([a])=([b],[c])$.
- A map is bijective if it is one-to-one and onto.
- If $f: S \rightarrow T$ is a bijection, then S and T are said to have the same cardinality (size), and the result you are to prove is simply that when $\operatorname{gcd}(m, n)=1$, the size of $U_{m n}$ and $U_{m} \times U_{n}$ is the same.

